Department of Physics, University of California at San Diego, La Jolla, California 92093-0374, USA.
Nature. 2013 Aug 15;500(7462):301-6. doi: 10.1038/nature12446. Epub 2013 Aug 7.
The cyclic AMP (cAMP)-dependent catabolite repression effect in Escherichia coli is among the most intensely studied regulatory processes in biology. However, the physiological function(s) of cAMP signalling and its molecular triggers remain elusive. Here we use a quantitative physiological approach to show that cAMP signalling tightly coordinates the expression of catabolic proteins with biosynthetic and ribosomal proteins, in accordance with the cellular metabolic needs during exponential growth. The expression of carbon catabolic genes increased linearly with decreasing growth rates upon limitation of carbon influx, but decreased linearly with decreasing growth rate upon limitation of nitrogen or sulphur influx. In contrast, the expression of biosynthetic genes showed the opposite linear growth-rate dependence as the catabolic genes. A coarse-grained mathematical model provides a quantitative framework for understanding and predicting gene expression responses to catabolic and anabolic limitations. A scheme of integral feedback control featuring the inhibition of cAMP signalling by metabolic precursors is proposed and validated. These results reveal a key physiological role of cAMP-dependent catabolite repression: to ensure that proteomic resources are spent on distinct metabolic sectors as needed in different nutrient environments. Our findings underscore the power of quantitative physiology in unravelling the underlying functions of complex molecular signalling networks.
在生物学中,大肠杆菌中 cAMP(环磷酸腺苷)依赖性分解代谢物阻遏效应是研究最深入的调控过程之一。然而,cAMP 信号及其分子触发的生理功能仍然难以捉摸。在这里,我们使用定量生理方法表明,cAMP 信号根据指数生长期间细胞代谢的需要,与生物合成和核糖体蛋白紧密协调分解代谢蛋白的表达。当碳流入受到限制时,碳分解代谢基因的表达随着生长速率的降低而线性增加,但当氮或硫流入受到限制时,碳分解代谢基因的表达随着生长速率的降低而线性降低。相比之下,生物合成基因的表达与碳分解代谢基因呈相反的线性生长速率依赖性。一个粗粒度的数学模型为理解和预测基因表达对碳分解和氮合成限制的反应提供了一个定量框架。提出并验证了一种具有代谢前体抑制 cAMP 信号的积分反馈控制方案。这些结果揭示了 cAMP 依赖性分解代谢物阻遏的一个关键生理作用:确保在不同的营养环境中,根据需要将蛋白质组资源用于不同的代谢区域。我们的研究结果强调了定量生理学在揭示复杂分子信号网络的潜在功能方面的强大功能。