Suppr超能文献

基于学习字典上的稀疏表示重建大脑结构的电子显微镜图像

Electron Microscopy Reconstruction of Brain Structure Using Sparse Representations Over Learned Dictionaries.

出版信息

IEEE Trans Med Imaging. 2013 Dec;32(12):2179-88. doi: 10.1109/TMI.2013.2276018. Epub 2013 Aug 2.

Abstract

A central problem in neuroscience is reconstructing neuronal circuits on the synapse level. Due to a wide range of scales in brain architecture such reconstruction requires imaging that is both high-resolution and high-throughput. Existing electron microscopy (EM) techniques possess required resolution in the lateral plane and either high-throughput or high depth resolution but not both. Here, we exploit recent advances in unsupervised learning and signal processing to obtain high depth-resolution EM images computationally without sacrificing throughput. First, we show that the brain tissue can be represented as a sparse linear combination of localized basis functions that are learned using high-resolution datasets. We then develop compressive sensing-inspired techniques that can reconstruct the brain tissue from very few (typically five) tomographic views of each section. This enables tracing of neuronal processes and, hence, high throughput reconstruction of neural circuits on the level of individual synapses.

摘要

神经科学中的一个核心问题是在突触水平上重建神经元回路。由于大脑结构的尺度范围很广,这种重建需要高分辨率和高通量的成像。现有的电子显微镜 (EM) 技术在侧向上具有所需的分辨率,要么具有高通量,要么具有高深度分辨率,但两者都不具备。在这里,我们利用无监督学习和信号处理的最新进展,在不牺牲吞吐量的情况下,通过计算获得高深度分辨率的 EM 图像。首先,我们表明脑组织可以表示为使用高分辨率数据集学习的局部基函数的稀疏线性组合。然后,我们开发了受压缩感知启发的技术,可以从每个切片的很少(通常为五个)断层扫描视图中重建脑组织。这使得能够追踪神经元过程,从而在单个突触水平上实现高吞吐量的神经回路重建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验