Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
MIT McGovern Institute for Brain Research, Cambridge, United States.
Elife. 2022 Oct 26;11:e81248. doi: 10.7554/eLife.81248.
Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.
大脑功能是由分子和细胞成分的庞大而错综复杂的网络的生理协调介导的。神经网络成分的生理特性可以通过高通量来量化。在将生理特性与行为相关联方面,能够评估每个研究中的许多动物的能力至关重要。相比之下,目前仅可以通过低通量来量化神经回路的突触结构。这种低通量阻碍了理解网络结构的变化如何与行为的变化相关的努力。对于神经解剖学重建,电子显微镜 (EM) 方法和光显微镜 (LM) 方法之间存在方法上的鸿沟,前者以相当大的代价和低通量提供密集的连接组,后者以高通量但没有突触分辨率提供分子和细胞类型特异性。为了弥合这一鸿沟,我们开发了一种高通量分析管道和成像协议,使用组织扩展和光片显微镜 (ExLLSM) 以单突触分辨率和分子对比在许多动物中快速重建选定的回路。使用 来验证这种方法,我们证明它可以产生与 EM 获得的相似的突触计数,能够比较不同性别和经验的突触连接,并且可以用于关联结构连接、功能连接和行为。这种方法填补了在个体内和个体间物种中研究神经回路结构和功能变异性的关键方法学空白。