Suppr超能文献

大小要合适:在设计人体芯片时的缩放效应。

On being the right size: scaling effects in designing a human-on-a-chip.

机构信息

Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA.

出版信息

Integr Biol (Camb). 2013 Sep;5(9):1149-61. doi: 10.1039/c3ib40040a.

Abstract

Developing a human-on-a-chip by connecting multiple model organ systems would provide an intermediate screen for therapeutic efficacy and toxic side effects of drugs prior to conducting expensive clinical trials. However, correctly designing individual organs and scaling them relative to each other to make a functional microscale human analog is challenging, and a generalized approach has yet to be identified. In this work, we demonstrate the importance of rational design of both the individual organ and its relationship with other organs, using a simple two-compartment system simulating insulin-dependent glucose uptake in adipose tissues. We demonstrate that inter-organ scaling laws depend on both the number of cells and the spatial arrangement of those cells within the microfabricated construct. We then propose a simple and novel inter-organ 'metabolically supported functional scaling' approach predicated on maintaining in vivo cellular basal metabolic rates by limiting resources available to cells on the chip. This approach leverages findings from allometric scaling models in mammals that limited resources in vivo prompt cells to behave differently than in resource-rich in vitro cultures. Although applying scaling laws directly to tissues can result in systems that would be quite challenging to implement, engineering workarounds may be used to circumvent these scaling issues. Specific workarounds discussed include the limited oxygen carrying capacity of cell culture media when used as a blood substitute and the ability to engineer non-physiological structures to augment organ function, to create the transport-accessible, yet resource-limited environment necessary for cells to mimic in vivo functionality. Furthermore, designing the structure of individual tissues in each organ compartment may be a useful strategy to bypass scaling concerns at the inter-organ level.

摘要

通过连接多个器官系统来开发人体芯片,将在进行昂贵的临床试验之前,为药物的治疗效果和毒副作用提供一个中间筛选。然而,正确设计单个器官并对其进行相互缩放以制造具有功能的微尺度人体模拟是具有挑战性的,并且尚未确定通用方法。在这项工作中,我们使用模拟脂肪组织中胰岛素依赖性葡萄糖摄取的简单两室系统,证明了对单个器官及其与其他器官关系的合理设计的重要性。我们证明了器官间缩放定律取决于细胞数量和细胞在微制造结构内的空间排列。然后,我们提出了一种简单而新颖的器官间“代谢支持功能缩放”方法,其前提是通过限制芯片上细胞可用的资源来维持体内细胞的基础代谢率。这种方法利用了哺乳动物中比例缩放模型的发现,即体内有限的资源促使细胞表现出与体外富含资源的培养物不同的行为。尽管直接将缩放定律应用于组织可能会导致系统难以实施,但可以使用工程工作来规避这些缩放问题。讨论的具体工作包括细胞培养基在用作血液替代品时的有限携氧能力,以及设计非生理结构以增强器官功能的能力,以创建可运输但资源有限的环境,使细胞能够模拟体内功能。此外,设计每个器官腔室中单个组织的结构可能是绕过器官间水平缩放问题的有用策略。

相似文献

3
Multi-level regulation and metabolic scaling.多层次调节与代谢比例关系
J Exp Biol. 2005 May;208(Pt 9):1627-34. doi: 10.1242/jeb.01503.
4
Biomimetic tissues on a chip for drug discovery.芯片上的仿生组织用于药物发现。
Drug Discov Today. 2012 Feb;17(3-4):173-81. doi: 10.1016/j.drudis.2011.10.029. Epub 2011 Nov 7.
6
Building an experimental model of the human body with non-physiological parameters.构建具有非生理参数的人体实验模型。
Technology (Singap World Sci). 2017 Mar;5(1):42-59. doi: 10.1142/S2339547817500029. Epub 2017 Mar 31.
8
Metabolic scaling: a many-splendoured thing.代谢比例关系:一件绚丽多彩的事物。
Comp Biochem Physiol B Biochem Mol Biol. 2004 Nov;139(3):531-41. doi: 10.1016/j.cbpc.2004.05.001.

引用本文的文献

3
Tissue chips as headway model and incitement technology.组织芯片作为进展模型和刺激技术。
Synth Syst Biotechnol. 2024 Aug 30;10(1):86-101. doi: 10.1016/j.synbio.2024.08.007. eCollection 2025.
4
Targeted Cancer Therapy-on-A-Chip.靶向癌症治疗芯片
Adv Healthc Mater. 2024 Nov;13(29):e2400833. doi: 10.1002/adhm.202400833. Epub 2024 Aug 5.
5
Liver-on-chips for drug discovery and development.用于药物发现与开发的芯片肝脏模型
Mater Today Bio. 2024 Jul 2;27:101143. doi: 10.1016/j.mtbio.2024.101143. eCollection 2024 Aug.

本文引用的文献

1
Allometry of brain metabolism.脑代谢的异速生长
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3216-7. doi: 10.1073/pnas.1221313110. Epub 2013 Feb 13.
8
Microengineered physiological biomimicry: organs-on-chips.微工程生理仿生学:芯片上器官。
Lab Chip. 2012 Jun 21;12(12):2156-64. doi: 10.1039/c2lc40089h. Epub 2012 May 3.
9
Engineering microscale topographies to control the cell-substrate interface.工程微形貌以控制细胞-基底界面。
Biomaterials. 2012 Jul;33(21):5230-46. doi: 10.1016/j.biomaterials.2012.03.079. Epub 2012 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验