Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street HSF II, Baltimore, Maryland 21201, USA.
J Chem Phys. 2013 Aug 7;139(5):055105. doi: 10.1063/1.4817344.
This work describes a novel protocol to efficiently calculate the local free energy of hydration of specific regions in macromolecules. The method employs Monte Carlo simulations in the grand canonical ensemble to generate water configurations in a selected spherical region in the macromolecule. Excess energy and entropy of hydration are calculated by analyzing the water configurational distributions following the recently published grid inhomogeneous solvation theory method [C. N. Nguyen, T. K. Young, and M. K. Gilson, J. Chem. Phys. 137, 044101 (2012)]. Our method involves the approximations of treating the macromolecule and distant solvent as rigid and performing calculations on multiple such conformations to account for conformational diversity. These approximations are tested against water configurations obtained from a molecular dynamics simulation. The method is validated by predicting the number and location of water molecules in 5 pockets in the protein Interleukin-1β for which experimental water occupancy data are available. Free energy values are validated against decoupling free energy perturbation calculations. The results indicate that the approximations used in the method enable efficient prediction of free energies of water displacement.
这项工作描述了一种计算大分子中特定区域水合自由能的新方法。该方法采用巨正则系综中的蒙特卡罗模拟,在大分子中选定的球形区域中生成水的配置。通过分析水的构型分布,根据最近发表的网格不均匀溶剂化理论方法[C. N. Nguyen、T. K. Young 和 M. K. Gilson,J. Chem. Phys. 137, 044101 (2012)]计算水合的过剩能量和熵。我们的方法涉及到将大分子和远距离溶剂处理为刚性的近似,并对多个这样的构象进行计算,以考虑构象多样性。这些近似值是通过与从分子动力学模拟中获得的水构型进行比较来测试的。该方法通过预测实验性水占据数据可用的蛋白质白细胞介素-1β中 5 个口袋中的水分子数量和位置来进行验证。自由能值与解耦自由能微扰计算进行了验证。结果表明,该方法中使用的近似值能够有效地预测水置换自由能。