Suppr超能文献

在类似巨正则系综的蒙特卡罗-分子动力学模拟中,利用振荡过剩化学势对水相和非均相环境中的有机溶质进行采样。

Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.

作者信息

Lakkaraju Sirish Kaushik, Raman E Prabhu, Yu Wenbo, MacKerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , 20 Penn Street, Baltimore, Maryland 21201, United States.

出版信息

J Chem Theory Comput. 2014 Jun 10;10(6):2281-2290. doi: 10.1021/ct500201y. Epub 2014 May 6.

Abstract

Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μ) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μ of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μ GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μ of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μ GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities.

摘要

在巨正则(GC)系综模拟中,由于溶质的插入概率较低,对显式体相水环境进行溶质采样时收敛性较差。为了解决这个问题,我们开发了一种迭代程序,该程序涉及类巨正则蒙特卡罗(GCMC)和分子动力学(MD)模拟。每次迭代都包括溶质和水的GCMC,然后是MD,溶质和水的过量化学势(μ)会振荡,以在模拟系统中达到它们的目标浓度。通过在GCMC-MD迭代过程中定期改变水和溶质的μ,溶质交换概率和溶质的空间分布得到了改善。振荡μ GCMC-MD方法的实用性体现在它能够近似水溶液以及多种溶质的稀水溶液混合物中单个溶质的水化自由能(HFE)。对于七种有机溶质:苯、丙烷、乙醛、甲醇、甲酰胺、乙酸盐和甲基铵,在1 M标准态和稀水溶液混合物系统中,溶质和水的平均μ都收敛到接近它们各自的HFE。振荡μ GCMC方法还能够驱动水环境中蛋白质内的溶质采样,如以T4溶菌酶L99A突变体的封闭结合口袋作为模型系统所示。该方法被证明能够令人满意地重现苯的结合自由能,并且能够对封闭口袋的官能团需求进行采样,这与结合到L99A突变体上的已知配体的晶体结构及其相对结合亲和力一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2968/4053307/449a171ef9aa/ct-2014-00201y_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验