Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.
Med Phys. 2013 Aug;40(8):081717. doi: 10.1118/1.4816308.
To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.
Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose-response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.
The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%-91%) as compared to the observed TCP of 70%.
The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.
展示一种基于既往治疗患者复发空间分布的、数据驱动的剂量描绘策略。该方法可以定量定义剂量处方函数,在保持治疗强度不变的情况下优化局部控制的预测。通过对 20 名患者进行优化剂量处方的剂量规划研究来验证。
本中心治疗的患者有五个肿瘤亚体积,从肿瘤中心(正电子发射断层扫描阳性体积)向外勾画。利用完全临床缓解(放化疗后)患者 48 例失败的空间分布,建立肿瘤控制概率(TCP)模型。总 TCP 固定为临床观察到的五年 70%实际 TCP。此外,作者还将 5 个亚体积之间失败的分布与观察到的分布相匹配。从文献中提取剂量反应的陡峭度,假设选择性体积中有 30%和 20%的亚临床累及风险。结果是一个与观察到的失败分布相匹配的五室剂量反应模型。该模型用于优化个体患者的剂量分布,同时保持治疗强度不变,最大处方剂量低于 85Gy。
尽管中央区域的体积较小,但绝大多数失败都发生在中央区域。因此,优化剂量处方可以使中央靶区获得更高的剂量,选择性靶区获得更低的剂量。剂量规划研究表明,修改后的处方在临床上是可行的。优化后的 TCP 为 89%(范围:82%-91%),而观察到的 TCP 为 70%。
使用局部区域失败的观察分布来推导出一种客观的、数据驱动的剂量处方函数。优化后的剂量预计将显著提高局部控制率,而不会增加预测毒性的风险。