Suppr超能文献

哺乳动物胚胎中的红系发育。

Erythroid development in the mammalian embryo.

机构信息

Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Blood Cells Mol Dis. 2013 Dec;51(4):213-9. doi: 10.1016/j.bcmd.2013.07.006. Epub 2013 Aug 7.

Abstract

Erythropoiesis is the process by which progenitors for red blood cells are produced and terminally differentiate. In all vertebrates, two morphologically distinct erythroid lineages (primitive, embryonic, and definitive, fetal/adult) form successively within the yolk sac, fetal liver, and marrow and are essential for normal development. Red blood cells have evolved highly specialized functions in oxygen transport, defense against oxidation, and vascular remodeling. Here we review key features of the ontogeny of red blood cell development in mammals, highlight similarities and differences revealed by genetic and gene expression profiling studies, and discuss methods for identifying erythroid cells at different stages of development and differentiation.

摘要

红细胞生成是指红细胞祖细胞产生和终末分化的过程。在所有脊椎动物中,两种形态上不同的红系谱系(原始的、胚胎的和确定的、胎儿/成人的)在卵黄囊、胎儿肝脏和骨髓中依次形成,对于正常发育是必不可少的。红细胞在氧气运输、抗氧化防御和血管重塑方面具有高度特化的功能。在这里,我们综述了哺乳动物红细胞发育的个体发生的关键特征,强调了遗传和基因表达谱研究揭示的相似性和差异,并讨论了鉴定不同发育和分化阶段的红细胞的方法。

相似文献

1
Erythroid development in the mammalian embryo.
Blood Cells Mol Dis. 2013 Dec;51(4):213-9. doi: 10.1016/j.bcmd.2013.07.006. Epub 2013 Aug 7.
2
Erythropoiesis in the mammalian embryo.
Exp Hematol. 2024 Aug;136:104283. doi: 10.1016/j.exphem.2024.104283. Epub 2024 Jul 22.
3
Functional Analysis of Erythroid Progenitors by Colony-Forming Assays.
Methods Mol Biol. 2018;1698:117-132. doi: 10.1007/978-1-4939-7428-3_7.
4
Developmental niches for embryonic erythroid cells.
Blood Cells Mol Dis. 2010 Apr 15;44(4):207-8. doi: 10.1016/j.bcmd.2010.02.008. Epub 2010 Feb 24.
5
The embryonic origins of erythropoiesis in mammals.
Blood. 2012 May 24;119(21):4828-37. doi: 10.1182/blood-2012-01-153486. Epub 2012 Feb 15.
6
Hematopoiesis in the yolk sac: more than meets the eye.
Exp Hematol. 2005 Sep;33(9):1021-8. doi: 10.1016/j.exphem.2005.06.012.
7
Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.
Development. 1999 Nov;126(22):5073-84. doi: 10.1242/dev.126.22.5073.
8
A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo.
Blood. 2011 Apr 28;117(17):4600-8. doi: 10.1182/blood-2010-12-325357. Epub 2011 Mar 4.
9
Development and differentiation of the erythroid lineage in mammals.
Dev Comp Immunol. 2016 May;58:18-29. doi: 10.1016/j.dci.2015.12.012. Epub 2015 Dec 19.

引用本文的文献

2
Immunoregulation role of the erythroid cells.
Front Immunol. 2024 Oct 15;15:1466669. doi: 10.3389/fimmu.2024.1466669. eCollection 2024.
4
Normal and dysregulated crosstalk between iron metabolism and erythropoiesis.
Elife. 2023 Aug 14;12:e90189. doi: 10.7554/eLife.90189.
5
Emerging role of Hippo pathway in the regulation of hematopoiesis.
BMB Rep. 2023 Aug;56(8):417-425. doi: 10.5483/BMBRep.2023-0094.
6
Investigation of SAMD1 ablation in mice.
Sci Rep. 2023 Feb 21;13(1):3000. doi: 10.1038/s41598-023-29779-3.
7
Long noncoding RNA promotes erythroid differentiation coordinating with GATA1 and chromatin remodeling.
Blood Sci. 2019 Oct 21;1(2):161-167. doi: 10.1097/BS9.0000000000000031. eCollection 2019 Oct.
8
IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data.
PLoS Comput Biol. 2022 Feb 25;18(2):e1009907. doi: 10.1371/journal.pcbi.1009907. eCollection 2022 Feb.
9
Histology Atlas of the Developing Mouse Placenta.
Toxicol Pathol. 2022 Jan;50(1):60-117. doi: 10.1177/01926233211042270. Epub 2021 Dec 6.
10
Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors.
Nat Commun. 2021 Dec 2;12(1):7019. doi: 10.1038/s41467-021-27140-8.

本文引用的文献

3
Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice.
Blood. 2013 Mar 28;121(13):2553-62. doi: 10.1182/blood-2012-06-434530. Epub 2013 Jan 29.
5
Ontogeny of erythroid gene expression.
Blood. 2013 Feb 7;121(6):e5-e13. doi: 10.1182/blood-2012-04-422394. Epub 2012 Dec 12.
6
Development of membrane mechanical function during terminal stages of primitive erythropoiesis in mice.
Exp Hematol. 2013 Apr;41(4):398-408.e2. doi: 10.1016/j.exphem.2012.11.007. Epub 2012 Nov 30.
7
EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro.
Blood. 2013 Jan 24;121(4):666-78. doi: 10.1182/blood-2012-05-427302. Epub 2012 Nov 28.
8
GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment.
Blood. 2012 Jul 12;120(2):314-22. doi: 10.1182/blood-2011-10-386094. Epub 2012 Jun 5.
9
The embryonic origins of erythropoiesis in mammals.
Blood. 2012 May 24;119(21):4828-37. doi: 10.1182/blood-2012-01-153486. Epub 2012 Feb 15.
10
FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors.
EMBO J. 2012 Jan 18;31(2):351-65. doi: 10.1038/emboj.2011.390. Epub 2011 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验