Biocomputing Unit, Centro Nacional de Biotecnología-CSIC, C/Darwin 3, 28049 Cantoblanco (Madrid), Spain.
Biocomputing Unit, Centro Nacional de Biotecnología-CSIC, C/Darwin 3, 28049 Cantoblanco (Madrid), Spain.
J Struct Biol. 2013 Sep;183(3):342-353. doi: 10.1016/j.jsb.2013.07.015. Epub 2013 Aug 6.
Three-dimensional reconstruction of biological specimens using electron microscopy by single particle methodologies requires the identification and extraction of the imaged particles from the acquired micrographs. Automatic and semiautomatic particle selection approaches can localize these particles, minimizing the user interaction, but at the cost of selecting a non-negligible number of incorrect particles, which can corrupt the final three-dimensional reconstruction. In this work, we present a novel particle quality assessment and sorting method that can separate most erroneously picked particles from correct ones. The proposed method is based on multivariate statistical analysis of a particle set that has been picked previously using any automatic or manual approach. The new method uses different sets of particle descriptors, which are morphology-based, histogram-based and signal to noise analysis based. We have tested our proposed algorithm with experimental data obtaining very satisfactory results. The algorithm is freely available as a part of the Xmipp 3.0 package [http://xmipp.cnb.csic.es].
使用单颗粒方法学通过电子显微镜对生物标本进行三维重建需要从获取的显微照片中识别和提取成像颗粒。自动和半自动的颗粒选择方法可以定位这些颗粒,最大限度地减少用户交互,但代价是选择了相当数量的错误颗粒,这可能会破坏最终的三维重建。在这项工作中,我们提出了一种新的颗粒质量评估和分类方法,可以将大多数错误选择的颗粒与正确的颗粒分离。所提出的方法基于先前使用任何自动或手动方法选择的颗粒集的多元统计分析。新方法使用了不同的颗粒描述符集,包括基于形态、基于直方图和基于信号噪声分析的描述符集。我们使用实验数据对我们提出的算法进行了测试,得到了非常满意的结果。该算法作为 Xmipp 3.0 软件包的一部分[http://xmipp.cnb.csic.es]是免费提供的。