Suppr超能文献

生物聚合物前体9-氧代壬酸的合成。

Synthesis of 9-oxononanoic acid, a precursor for biopolymers.

作者信息

Otte Konrad B, Kirtz Marko, Nestl Bettina M, Hauer Bernhard

机构信息

Department of Chemistry, Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569 Stuttgart (Germany).

出版信息

ChemSusChem. 2013 Nov;6(11):2149-56. doi: 10.1002/cssc.201300183. Epub 2013 Aug 9.

Abstract

Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high-performance materials. Unfortunately, interesting building blocks of medium-chain length are difficult to obtain by traditional chemical means. Herein, a biotechnological pathway is established that could provide an environmentally suitable and sustainable alternative. A multiple enzyme two-step one-pot process efficiently catalyzed by a coupled 9S-lipoxygenase (St-LOX1, Solanum tuberosum) and 9/13-hydroperoxide lyase (Cm-9/13HPL, Cucumis melo) cascade reaction is proposed as a potential route for the conversion of linoleic acid into 9-oxononanoic acid, which is a precursor for biopolymers. Lipoxygenase catalyzes the insertion of oxygen into linoleic acid through a radical mechanism to give 9S-hydroperoxy-octadecadienoic acid (9S-HPODE) as a cascade intermediate, which is subsequently cleaved by the action of Cm-9/13HPL. This one-pot process afforded a yield of 73 % combined with high selectivity. The best reaction performance was achieved when lipoxygenase and hydroperoxide lyase were applied in a successive rather than a simultaneous manner. Green leaf volatiles, which are desired flavor and fragrance products, are formed as by-products in this reaction cascade. Furthermore, we have investigated the enantioselectivity of 9/13-HPLs, which exhibited a strong preference for 9S-HPODE over 9R-HPODE.

摘要

基于可再生资源的聚合物变得越来越重要。油脂的天然官能化使得能够轻松获得有趣的单体结构单元,进而将衍生的生物聚合物转化为高性能材料。不幸的是,中等链长的有趣结构单元难以通过传统化学方法获得。在此,建立了一种生物技术途径,它可以提供一种环境适宜且可持续的替代方法。提出了一种由耦合的9S-脂氧合酶(马铃薯St-LOX1)和9/13-氢过氧化物裂解酶(甜瓜Cm-9/13HPL)级联反应高效催化的多酶两步一锅法,作为将亚油酸转化为9-氧代壬酸的潜在途径,9-氧代壬酸是生物聚合物的前体。脂氧合酶通过自由基机制催化将氧插入亚油酸中,生成9S-氢过氧十八碳二烯酸(9S-HPODE)作为级联中间体,随后该中间体在Cm-9/13HPL的作用下裂解。这种一锅法的产率为73%,同时具有高选择性。当脂氧合酶和氢过氧化物裂解酶依次而非同时应用时,可实现最佳反应性能。绿叶挥发物是所需的香料和香精产品,在该反应级联中作为副产物形成。此外,我们还研究了9/13-HPLs的对映选择性,其对9S-HPODE的偏好明显高于9R-HPODE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验