Suppr超能文献

可溶性鸟苷酸环化酶调节新生儿肺的肺泡化。

Soluble guanylate cyclase modulates alveolarization in the newborn lung.

机构信息

Jr., Cardiovascular Research Center, Massachusetts General Hospital - East, 149 13 St., Charlestown, MA 02129.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2013 Oct 15;305(8):L569-81. doi: 10.1152/ajplung.00401.2012. Epub 2013 Aug 9.

Abstract

Nitric oxide (NO) regulates lung development through incompletely understood mechanisms. NO controls pulmonary vascular smooth muscle cell (SMC) differentiation largely through stimulating soluble guanylate cyclase (sGC) to produce cGMP and increase cGMP-mediated signaling. To examine the role of sGC in regulating pulmonary development, we tested whether decreased sGC activity reduces alveolarization in the normal and injured newborn lung. For these studies, mouse pups with gene-targeted sGC-α1 subunit truncation were used because we determined that they have decreased pulmonary sGC enzyme activity. sGC-α1 knockout (KO) mouse pups were observed to have decreased numbers of small airway structures and lung volume compared with wild-type (WT) mice although lung septation and body weights were not different. However, following mild lung injury caused by breathing 70% O2, the sGC-α1 KO mouse pups had pronounced inhibition of alveolarization, as evidenced by an increase in airway mean linear intercept, reduction in terminal airway units, and decrease in lung septation and alveolar openings, as well as reduced somatic growth. Because cGMP regulates SMC phenotype, we also tested whether decreased sGC activity reduces lung myofibroblast differentiation. Cellular markers revealed that vascular SMC differentiation decreased, whereas myofibroblast activation increased in the hyperoxic sGC-α1 KO pup lung. These results indicate that lung development, particularly during hyperoxic injury, is impaired in mouse pups with diminished sGC activity. These studies support the investigation of sGC-targeting agents as therapies directed at improving development in the newborn lung exposed to injury.

摘要

一氧化氮(NO)通过尚未完全阐明的机制调节肺发育。NO 通过刺激可溶性鸟苷酸环化酶(sGC)产生 cGMP 并增加 cGMP 介导的信号转导,来控制肺血管平滑肌细胞(SMC)分化。为了研究 sGC 在调节肺发育中的作用,我们检测了 sGC 活性降低是否会减少正常和受伤新生肺的肺泡化。为此,我们使用了基因靶向 sGC-α1 亚单位截断的小鼠幼仔,因为我们确定它们的肺 sGC 酶活性降低。与野生型(WT)小鼠相比,sGC-α1 敲除(KO)小鼠幼仔的小气道结构数量和肺容量减少,尽管肺分隔和体重没有差异。然而,在经历 70%O2 呼吸引起的轻度肺损伤后,sGC-α1 KO 小鼠幼仔的肺泡化明显受到抑制,这表现在气道平均线性截距增加、终末气道单位减少以及肺分隔和肺泡开口减少,同时躯体生长也受到抑制。由于 cGMP 调节 SMC 表型,我们还检测了 sGC 活性降低是否会减少肺肌成纤维细胞分化。细胞标志物显示,在高氧 sGC-α1 KO 幼鼠肺中,血管 SMC 分化减少,而肌成纤维细胞激活增加。这些结果表明,在 sGC 活性降低的小鼠幼仔中,肺发育,特别是在高氧损伤期间,受损。这些研究支持针对 sGC 靶向药物的研究,作为针对暴露于损伤的新生肺发育的治疗方法。

相似文献

1
Soluble guanylate cyclase modulates alveolarization in the newborn lung.可溶性鸟苷酸环化酶调节新生儿肺的肺泡化。
Am J Physiol Lung Cell Mol Physiol. 2013 Oct 15;305(8):L569-81. doi: 10.1152/ajplung.00401.2012. Epub 2013 Aug 9.
6
10
Gastric motility in soluble guanylate cyclase alpha 1 knock-out mice.可溶性鸟苷酸环化酶α1基因敲除小鼠的胃动力
J Physiol. 2007 Nov 1;584(Pt 3):907-20. doi: 10.1113/jphysiol.2007.140608. Epub 2007 Aug 23.

引用本文的文献

4
The differential roles of the two NO-GC isoforms in adjusting airway reactivity.两种 NO-GC 同工型在调节气道反应性中的差异作用。
Am J Physiol Lung Cell Mol Physiol. 2022 Oct 1;323(4):L450-L463. doi: 10.1152/ajplung.00404.2021. Epub 2022 Aug 16.

本文引用的文献

2
The adventitia: essential regulator of vascular wall structure and function.中膜:血管壁结构和功能的必要调节者。
Annu Rev Physiol. 2013;75:23-47. doi: 10.1146/annurev-physiol-030212-183802. Epub 2012 Dec 3.
3
Analysis of regional compliance in a porcine model of acute lung injury.分析急性肺损伤猪模型中的区域性顺应性。
Respir Physiol Neurobiol. 2012 Oct 15;184(1):16-26. doi: 10.1016/j.resp.2012.07.006. Epub 2012 Jul 20.
5
Structure and regulation of soluble guanylate cyclase.可溶性鸟苷酸环化酶的结构与调节。
Annu Rev Biochem. 2012;81:533-59. doi: 10.1146/annurev-biochem-050410-100030. Epub 2012 Feb 9.
6
The a"MAZE"ing world of lung-specific transgenic mice.肺特异性转基因小鼠的“迷宫”世界。
Am J Respir Cell Mol Biol. 2012 Mar;46(3):269-82. doi: 10.1165/rcmb.2011-0372PS. Epub 2011 Dec 28.
8
Regulation of the pulmonary circulation in the fetus and newborn.胎儿和新生儿肺循环的调节。
Physiol Rev. 2010 Oct;90(4):1291-335. doi: 10.1152/physrev.00032.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验