Suppr超能文献

五种常用于下调 TOR 复合物 1 的条件会产生不同的生理情况,表现出不同的需求和结果。

Five conditions commonly used to down-regulate tor complex 1 generate different physiological situations exhibiting distinct requirements and outcomes.

机构信息

Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.

Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.

出版信息

J Biol Chem. 2013 Sep 20;288(38):27243-27262. doi: 10.1074/jbc.M113.484386. Epub 2013 Aug 9.

Abstract

Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc(13) localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc(13) localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal.

摘要

已经交替使用了五种不同的生理条件来建立实现氮响应下调 TorC1 及其随后对下游报告基因调控所需的分子事件顺序:氮饥饿、甲硫氨酸亚砜imine(Msx)添加、氮限制、雷帕霉素添加和亮氨酸饥饿。因此,我们检验了这些五种实验干扰所基于的一个特定的基本假设。即它们在 TorC1 方面产生生理等效的结果,即 TorC1 报告基因反应所反映的其下调。我们通过对头对头比较每种条件来实现 TorC1 失活的下游替代物核 Gln3 定位的共同结果,来检验这个假设。我们证明了下调 TorC1 的五种条件不会产生生理等效的结果。其中四种方法表现出 Sit4 和 PP2A 磷酸酶的层次要求,以引起核 Gln3-Myc(13)定位。雷帕霉素处理需要 Sit4 和 PP2A。氮限制和短期氮饥饿仅需要 Sit4。G1 期阻滞相关的长期氮饥饿和 Msx 处理既不需要 PP2A 也不需要 Sit4。饥饿细胞中的亮氨酸或用亮氨酰-tRNA 合成酶抑制剂处理它们不会引起核 Gln3-Myc(13)定位。这些数据表明,下调 TorC1 的五种常用氮相关条件在生理上并不等效,并且至少涉及部分不同的调节机制。此外,Msx 处理和长期氮饥饿的相同要求提出了这样一种可能性,即它们的作用是通过谷氨酰胺、谷氨酸或谷氨酰胺代谢物水平作为感知代谢信号的共同调节途径来实现的。

相似文献

7
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.
8
gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1.
J Biol Chem. 2013 Jan 25;288(4):2789-804. doi: 10.1074/jbc.M112.421826. Epub 2012 Dec 5.
9
Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.
J Biol Chem. 2013 Jan 18;288(3):1841-55. doi: 10.1074/jbc.M112.385054. Epub 2012 Nov 26.

引用本文的文献

3
D-Xylose Sensing in : Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
Int J Mol Sci. 2021 Nov 17;22(22):12410. doi: 10.3390/ijms222212410.
5
Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation.
Mol Biol Cell. 2020 May 1;31(10):1015-1031. doi: 10.1091/mbc.E19-11-0622. Epub 2020 Mar 11.
6
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.
7
Ser/Thr protein phosphatases in fungi: structure, regulation and function.
Microb Cell. 2019 Apr 24;6(5):217-256. doi: 10.15698/mic2019.05.677.
8
Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen.
PLoS Genet. 2018 May 21;14(5):e1007406. doi: 10.1371/journal.pgen.1007406. eCollection 2018 May.
9
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
10
Yeast RNA-Binding Protein Nab3 Regulates Genes Involved in Nitrogen Metabolism.
Mol Cell Biol. 2017 Aug 28;37(18). doi: 10.1128/MCB.00154-17. Print 2017 Sep 15.

本文引用的文献

1
gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1.
J Biol Chem. 2013 Jan 25;288(4):2789-804. doi: 10.1074/jbc.M112.421826. Epub 2012 Dec 5.
2
Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.
J Biol Chem. 2013 Jan 18;288(3):1841-55. doi: 10.1074/jbc.M112.385054. Epub 2012 Nov 26.
3
Nutritional control of growth and development in yeast.
Genetics. 2012 Sep;192(1):73-105. doi: 10.1534/genetics.111.135731.
4
Leucyl-tRNA synthetase controls TORC1 via the EGO complex.
Mol Cell. 2012 Apr 13;46(1):105-10. doi: 10.1016/j.molcel.2012.02.009. Epub 2012 Mar 15.
6
Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2011 Jan 21;404(3):859-64. doi: 10.1016/j.bbrc.2010.12.075. Epub 2010 Dec 22.
8
Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase.
Nucleic Acids Res. 2011 Jan;39(1):235-47. doi: 10.1093/nar/gkq763. Epub 2010 Aug 30.
10
TOR complex 2: a signaling pathway of its own.
Trends Biochem Sci. 2009 Dec;34(12):620-7. doi: 10.1016/j.tibs.2009.09.004. Epub 2009 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验