Suppr超能文献

活性谷氨酰胺酶 C 自组装成超四聚体寡聚物,这种寡聚物可以被别构抑制剂破坏。

Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor.

机构信息

From the Laboratórios Nacionais de Biociências e.

出版信息

J Biol Chem. 2013 Sep 27;288(39):28009-20. doi: 10.1074/jbc.M113.501346. Epub 2013 Aug 8.

Abstract

The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop (321)LRFNKL(326) is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys(311) in humans, Lys(316) in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.

摘要

酶无活性二聚体向催化能力四聚体的磷酸依赖性转变一直是谷氨酰胺酶激活的公认机制。在这里,我们证明激活的谷氨酰胺酶 C (GAC) 自组装成螺旋状纤维样双链寡聚物,并提出一个分子模型,该模型由每转每链的七个四聚体拷贝通过 N 端结构域相互作用组成。环 (321)LRFNKL(326) 被预测为自组装和酶激活的主要调节元件。此外,先前在体内鉴定的赖氨酸乙酰化 (人类中的 Lys(311),小鼠中的 Lys(316)) 在此被提议作为超寡聚体组装和蛋白质激活的重要下调因子。双-2-(5-苯乙酰胺基-1,3,4-噻二唑-2-基)乙基亚磺酰胺,一种已知的谷氨酰胺酶抑制剂,完全破坏了更高阶的寡聚体,解释了其通过四聚体稳定的别构抑制机制。三种哺乳动物谷氨酰胺酶同工酶的自组装倾向与活性水平之间存在直接相关性,其中 GAC 是最活跃的酶,同时形成最长的结构。最后,在 MDA-MB 231 癌细胞中外源表达易于形成纤维的超活性 GAC 突变体,为转化细胞提供了相当大的增殖优势。这些发现为针对肿瘤代谢的以 GAC 为导向的治疗方法的发展提供了独特的意义。

相似文献

3
Full-length human glutaminase in complex with an allosteric inhibitor.全长人谷氨酰胺酶与别构抑制剂复合物。
Biochemistry. 2011 Dec 20;50(50):10764-70. doi: 10.1021/bi201613d. Epub 2011 Nov 18.

引用本文的文献

3
HuR controls glutaminase RNA metabolism.HuR 控制谷氨酰胺酶 RNA 代谢。
Nat Commun. 2024 Jul 4;15(1):5620. doi: 10.1038/s41467-024-49874-x.
8
Agglomeration: when folded proteins clump together.聚集:当折叠的蛋白质聚集在一起时。
Biophys Rev. 2023 Dec 15;15(6):1987-2003. doi: 10.1007/s12551-023-01172-4. eCollection 2023 Dec.
10
Structural basis for activation and filamentation of glutaminase.谷氨酰胺酶激活与丝状化的结构基础
Cell Res. 2024 Jan;34(1):76-79. doi: 10.1038/s41422-023-00886-0. Epub 2023 Oct 13.

本文引用的文献

7
Targeting cancer metabolism--aiming at a tumour's sweet-spot.靶向癌症代谢——瞄准肿瘤的弱点。
Drug Discov Today. 2012 Mar;17(5-6):232-41. doi: 10.1016/j.drudis.2011.12.017. Epub 2011 Dec 22.
8
Full-length human glutaminase in complex with an allosteric inhibitor.全长人谷氨酰胺酶与别构抑制剂复合物。
Biochemistry. 2011 Dec 20;50(50):10764-70. doi: 10.1021/bi201613d. Epub 2011 Nov 18.
9
Targeting cancer metabolism: a therapeutic window opens.靶向肿瘤代谢:治疗窗口开启。
Nat Rev Drug Discov. 2011 Aug 31;10(9):671-84. doi: 10.1038/nrd3504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验