Suppr超能文献

基于量子粒子群优化算法的自适应DNA计算算法。

QPSO-based adaptive DNA computing algorithm.

作者信息

Karakose Mehmet, Cigdem Ugur

机构信息

Computer Engineering Department, Firat University, Elazig, Turkey.

出版信息

ScientificWorldJournal. 2013 Jul 15;2013:160687. doi: 10.1155/2013/160687. Print 2013.

Abstract

DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.

摘要

DNA(脱氧核糖核酸)计算作为一种基于DNA分子进行信息存储的新型计算模型,近年来在优化和数据分析中得到了越来越广泛的应用。然而,DNA计算算法在收敛速度、适应性和有效性方面存在一些局限性。本文提出了一种改进DNA计算的新方法。这种新方法旨在使用量子行为粒子群优化算法(QPSO)对具有自适应参数的DNA计算算法进行操作,以实现预期目标。基于自适应DNA计算算法的QPSO所做出的一些贡献如下:(1)针对自适应过程,同时调整DNA计算算法的种群规模、交叉率、最大操作数、酶和病毒突变率以及适应度函数;(2)使用QPSO算法执行自适应算法,以实现目标驱动的进展、更快的操作以及数据的灵活性;(3)在所提出的方法中,DNA计算算法的数值实现是在系统辨识中完成的。进行了两个针对不同系统的实验,以评估所提出方法的性能并给出对比结果。使用Matlab和FPGA获得的实验结果表明,根据DNA计算算法,该方法能够提供有效的优化、可观的收敛速度和高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec36/3727123/2819d99d97ae/TSWJ2013-160687.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验