Suppr超能文献

内侧前额叶皮层的价值和预测误差:整合单一单元和系统分析水平。

Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis.

机构信息

Department of Experimental Psychology, Ghent University Ghent, Belgium.

出版信息

Front Hum Neurosci. 2011 Aug 3;5:75. doi: 10.3389/fnhum.2011.00075. eCollection 2011.

Abstract

The role of the anterior cingulate cortex (ACC) in cognition has been extensively investigated with several techniques, including single-unit recordings in rodents and monkeys and EEG and fMRI in humans. This has generated a rich set of data and points of view. Important theoretical functions proposed for ACC are value estimation, error detection, error-likelihood estimation, conflict monitoring, and estimation of reward volatility. A unified view is lacking at this time, however. Here we propose that online value estimation could be the key function underlying these diverse data. This is instantiated in the reward value and prediction model (RVPM). The model contains units coding for the value of cues (stimuli or actions) and units coding for the differences between such values and the actual reward (prediction errors). We exposed the model to typical experimental paradigms from single-unit, EEG, and fMRI research to compare its overall behavior with the data from these studies. The model reproduced the ACC behavior of previous single-unit, EEG, and fMRI studies on reward processing, error processing, conflict monitoring, error-likelihood estimation, and volatility estimation, unifying the interpretations of the role performed by the ACC in some aspects of cognition.

摘要

前扣带皮层(ACC)在认知中的作用已经通过多种技术进行了广泛研究,包括啮齿动物和猴子的单细胞记录以及人类的 EEG 和 fMRI。这产生了丰富的数据和观点。为 ACC 提出的重要理论功能包括价值估计、错误检测、错误可能性估计、冲突监测和奖励波动性估计。然而,目前还缺乏统一的观点。在这里,我们提出在线价值估计可能是这些不同数据的关键功能。这在奖励值和预测模型 (RVPM) 中得到体现。该模型包含用于编码线索(刺激或动作)价值的单元和用于编码此类价值与实际奖励(预测误差)之间差异的单元。我们将模型暴露于来自单细胞、EEG 和 fMRI 研究的典型实验范式中,以比较其整体行为与这些研究的数据。该模型再现了之前关于奖励处理、错误处理、冲突监测、错误可能性估计和波动性估计的单细胞、EEG 和 fMRI 研究中的 ACC 行为,统一了在认知某些方面执行的 ACC 作用的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a15/3155079/2fbaf9f341fd/fnhum-05-00075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验