Suppr超能文献

超越漂移扩散模型:使用 HDDM 拟合广泛类别的决策和强化学习模型。

Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM.

机构信息

Brown University.

University of Oslo.

出版信息

J Cogn Neurosci. 2022 Sep 1;34(10):1780-1805. doi: 10.1162/jocn_a_01902.

Abstract

Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.

摘要

计算建模已经成为认知神经科学研究的一个核心方面。随着该领域的成熟,越来越有必要超越标准模型,以定量评估具有更丰富动态的模型,这些模型可能更好地反映潜在的认知和神经过程。例如,序列采样模型(SSMs)是一类决策模型,旨在捕获共同导致 RT 分布和 n 选择范式中选择数据的过程。许多模型变体具有理论意义,但历史上的实证数据分析都局限于一小部分解析可处理的似然函数的模型。最近,为无似然推断设计的方法的进步使得考虑更广泛的 SSM 范围在计算上变得可行。此外,最近的工作促使 SSM 与强化学习模型相结合,而强化学习模型在历史上被认为是分开的文献。在这里,我们为广泛使用的 HDDM Python 工具箱提供了一个重要的补充,并提供了一个教程,说明用户如何轻松拟合和评估(用户可扩展的)各种各样的 SSM,以及如何将它们与强化学习模型相结合。该扩展包括了模型可视化工具、后验预测检查以及通过层次贝叶斯回归将试验级别的神经信号与模型参数联系起来的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验