Suppr超能文献

分层漂移扩散模型揭示了数量辨别任务中的多感官益处。

Hierarchical drift diffusion modeling uncovers multisensory benefit in numerosity discrimination tasks.

作者信息

Chau Edwin, Murray Carolyn A, Shams Ladan

机构信息

Department of Mathematics, University of California, Los Angeles, Los Angeles, California, USA.

Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

PeerJ. 2021 Oct 27;9:e12273. doi: 10.7717/peerj.12273. eCollection 2021.

Abstract

Studies of accuracy and reaction time in decision making often observe a speed-accuracy tradeoff, where either accuracy or reaction time is sacrificed for the other. While this effect may mask certain multisensory benefits in performance when accuracy and reaction time are separately measured, drift diffusion models (DDMs) are able to consider both simultaneously. However, drift diffusion models are often limited by large sample size requirements for reliable parameter estimation. One solution to this restriction is the use of hierarchical Bayesian estimation for DDM parameters. Here, we utilize hierarchical drift diffusion models (HDDMs) to reveal a multisensory advantage in auditory-visual numerosity discrimination tasks. By fitting this model with a modestly sized dataset, we also demonstrate that large sample sizes are not necessary for reliable parameter estimation.

摘要

决策准确性和反应时间的研究常常观察到速度 - 准确性权衡,即准确性或反应时间会为了另一方而被牺牲。虽然在分别测量准确性和反应时间时,这种效应可能会掩盖表现中的某些多感官益处,但漂移扩散模型(DDM)能够同时考虑这两者。然而,漂移扩散模型通常受到可靠参数估计所需大样本量的限制。解决这一限制的一种方法是对DDM参数使用分层贝叶斯估计。在这里,我们利用分层漂移扩散模型(HDDM)来揭示视听数字辨别任务中的多感官优势。通过用适度规模的数据集拟合该模型,我们还证明了可靠的参数估计并不需要大样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a6/8556708/aa5708c19828/peerj-09-12273-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验