Ahn Woo-Young, Krawitz Adam, Kim Woojae, Busmeyer Jerome R, Brown Joshua W
Indiana University.
J Neurosci Psychol Econ. 2011 May;4(2):95-110. doi: 10.1037/a0020684.
A recent trend in decision neuroscience is the use of model-based fMRI using mathematical models of cognitive processes. However, most previous model-based fMRI studies have ignored individual differences due to the challenge of obtaining reliable parameter estimates for individual participants. Meanwhile, previous cognitive science studies have demonstrated that hierarchical Bayesian analysis is useful for obtaining reliable parameter estimates in cognitive models while allowing for individual differences. Here we demonstrate the application of hierarchical Bayesian parameter estimation to model-based fMRI using the example of decision making in the Iowa Gambling Task. First we use a simulation study to demonstrate that hierarchical Bayesian analysis outperforms conventional (individual- or group-level) maximum likelihood estimation in recovering true parameters. Then we perform model-based fMRI analyses on experimental data to examine how the fMRI results depend upon the estimation method.
决策神经科学领域最近的一个趋势是使用基于模型的功能磁共振成像(fMRI),即运用认知过程的数学模型。然而,由于要为个体参与者获得可靠的参数估计存在挑战,之前大多数基于模型的fMRI研究都忽略了个体差异。与此同时,先前的认知科学研究表明,分层贝叶斯分析有助于在认知模型中获得可靠的参数估计,同时考虑个体差异。在此,我们以爱荷华赌博任务中的决策为例,展示分层贝叶斯参数估计在基于模型的fMRI中的应用。首先,我们通过一项模拟研究来证明,在恢复真实参数方面,分层贝叶斯分析优于传统的(个体或组水平)最大似然估计。然后,我们对实验数据进行基于模型的fMRI分析,以检验fMRI结果如何依赖于估计方法。