Suppr超能文献

基于基因共表达网络的植物发育进化研究进展

A contribution to the study of plant development evolution based on gene co-expression networks.

机构信息

Department of Computer Science and Artificial Intelligence, Universidad de Sevilla Sevilla, Spain.

出版信息

Front Plant Sci. 2013 Aug 5;4:291. doi: 10.3389/fpls.2013.00291. eCollection 2013.

Abstract

Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.

摘要

由于其在捕获光能和固定二氧化碳以产生有机分子方面无与伦比的效率,光能自养真核生物是地球上最成功的生物之一。保守且高效的光依赖性调节模块网络可能是其成功的基础。这种调节系统赋予了光合真核生物早期的优势,使其能够特化、进行复杂的发育过程并具有现代植物的特征。我们采用基于基因共表达网络的综合组学方法,研究了从藻类到植物的光依赖性基因调控模块。我们的研究揭示了真核光合生物在应对光周期和光信号方面存在一些非常保守的方式。在这里,我们描述了拟南芥中参与光周期反应的一类转录因子如何根据基因进化的创新、扩增和分化理论,从单个藻类基因中进化而来。从古老的单细胞绿藻莱茵衣藻到现代的拟南芥 Brassica thaliana 中,基因共表达网络的这些修饰可能暗示了植物和其他生物的进化和特化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73f1/3732916/d1cc14a4f510/fpls-04-00291-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验