Suppr超能文献

快速关联测试基因与 FAST。

Fast association tests for genes with FAST.

机构信息

Department of Biomedical Engineering and Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2013 Jul 23;8(7):e68585. doi: 10.1371/journal.pone.0068585. Print 2013.

Abstract

UNLABELLED

Gene-based tests of association can increase the power of a genome-wide association study by aggregating multiple independent effects across a gene or locus into a single stronger signal. Recent gene-based tests have distinct approaches to selecting which variants to aggregate within a locus, modeling the effects of linkage disequilibrium, representing fractional allele counts from imputation, and managing permutation tests for p-values. Implementing these tests in a single, efficient framework has great practical value. Fast ASsociation Tests (Fast) addresses this need by implementing leading gene-based association tests together with conventional SNP-based univariate tests and providing a consolidated, easily interpreted report. Fast scales readily to genome-wide SNP data with millions of SNPs and tens of thousands of individuals, provides implementations that are orders of magnitude faster than original literature reports, and provides a unified framework for performing several gene based association tests concurrently and efficiently on the same data.

AVAILABILITY

https://bitbucket.org/baderlab/fast/downloads/FAST.tar.gz, with documentation at https://bitbucket.org/baderlab/fast/wiki/Home.

摘要

未标记

基于基因的关联测试可以通过将基因或基因座内的多个独立效应聚合到单个更强的信号中来增加全基因组关联研究的功效。最近的基于基因的测试在选择要聚合的变体、建模连锁不平衡的效应、表示来自 imputation 的分数等位基因计数以及管理 p 值的置换检验方面具有不同的方法。在单个高效框架中实现这些测试具有很大的实际价值。Fast ASsociation Tests (Fast) 通过实现领先的基于基因的关联测试与传统的基于 SNP 的单变量测试相结合,并提供一个综合的、易于解释的报告来满足这一需求。Fast 可以轻松扩展到具有数百万个 SNP 和数万个个体的全基因组 SNP 数据,提供的实现比原始文献报告快几个数量级,并为在同一数据上同时高效地执行多个基于基因的关联测试提供了一个统一的框架。

可用性

https://bitbucket.org/baderlab/fast/downloads/FAST.tar.gz,文档在 https://bitbucket.org/baderlab/fast/wiki/Home。

相似文献

1
Fast association tests for genes with FAST.
PLoS One. 2013 Jul 23;8(7):e68585. doi: 10.1371/journal.pone.0068585. Print 2013.
2
GATES: a rapid and powerful gene-based association test using extended Simes procedure.
Am J Hum Genet. 2011 Mar 11;88(3):283-93. doi: 10.1016/j.ajhg.2011.01.019.
3
SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment.
BMC Syst Biol. 2011;5 Suppl 2(Suppl 2):S11. doi: 10.1186/1752-0509-5-S2-S11. Epub 2011 Dec 14.
4
Analysis of single-locus tests to detect gene/disease associations.
Genet Epidemiol. 2005 Apr;28(3):207-19. doi: 10.1002/gepi.20050.
5
Analysis of untyped SNPs: maximum likelihood and imputation methods.
Genet Epidemiol. 2010 Dec;34(8):803-15. doi: 10.1002/gepi.20527.
6
Uncovering networks from genome-wide association studies via circular genomic permutation.
G3 (Bethesda). 2012 Sep;2(9):1067-75. doi: 10.1534/g3.112.002618. Epub 2012 Sep 1.
8
Adaptive SNP-Set Association Testing in Generalized Linear Mixed Models with Application to Family Studies.
Behav Genet. 2018 Jan;48(1):55-66. doi: 10.1007/s10519-017-9883-x. Epub 2017 Nov 17.
9
Selecting single-nucleotide polymorphisms for association studies with SNPbrowser software.
Methods Mol Biol. 2007;376:177-93. doi: 10.1007/978-1-59745-389-9_13.
10
Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.
PLoS Genet. 2008 Jul 25;4(7):e1000130. doi: 10.1371/journal.pgen.1000130.

引用本文的文献

1
Prioritization of causal genes from genome-wide association studies by Bayesian data integration across loci.
PLoS Comput Biol. 2025 Jan 7;21(1):e1012725. doi: 10.1371/journal.pcbi.1012725. eCollection 2025 Jan.
2
Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci.
Hum Genet. 2023 Aug;142(8):1113-1137. doi: 10.1007/s00439-023-02568-8. Epub 2023 May 28.
3
Priors, population sizes, and power in genome-wide hypothesis tests.
BMC Bioinformatics. 2023 Apr 26;24(1):170. doi: 10.1186/s12859-023-05261-9.
7
Trans-ethnic genome-wide association study of blood metabolites in the Chronic Renal Insufficiency Cohort (CRIC) study.
Kidney Int. 2022 Apr;101(4):814-823. doi: 10.1016/j.kint.2022.01.014. Epub 2022 Feb 1.
10
Evaluation of mitochondrial DNA copy number estimation techniques.
PLoS One. 2020 Jan 31;15(1):e0228166. doi: 10.1371/journal.pone.0228166. eCollection 2020.

本文引用的文献

2
GWAS reveals new recessive loci associated with non-syndromic facial clefting.
Eur J Med Genet. 2012 Oct;55(10):510-4. doi: 10.1016/j.ejmg.2012.06.005. Epub 2012 Jun 27.
3
On optimal gene-based analysis of genome scans.
Genet Epidemiol. 2012 May;36(4):333-9. doi: 10.1002/gepi.21625. Epub 2012 Apr 16.
4
A gene-based test of association using canonical correlation analysis.
Bioinformatics. 2012 Mar 15;28(6):845-50. doi: 10.1093/bioinformatics/bts051. Epub 2012 Jan 31.
5
Gene-based tests of association.
PLoS Genet. 2011 Jul;7(7):e1002177. doi: 10.1371/journal.pgen.1002177. Epub 2011 Jul 28.
6
Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption.
PLoS Genet. 2011 Apr;7(4):e1002033. doi: 10.1371/journal.pgen.1002033. Epub 2011 Apr 7.
7
GATES: a rapid and powerful gene-based association test using extended Simes procedure.
Am J Hum Genet. 2011 Mar 11;88(3):283-93. doi: 10.1016/j.ajhg.2011.01.019.
8
A map of human genome variation from population-scale sequencing.
Nature. 2010 Oct 28;467(7319):1061-73. doi: 10.1038/nature09534.
9
A versatile gene-based test for genome-wide association studies.
Am J Hum Genet. 2010 Jul 9;87(1):139-45. doi: 10.1016/j.ajhg.2010.06.009.
10
ProbABEL package for genome-wide association analysis of imputed data.
BMC Bioinformatics. 2010 Mar 16;11:134. doi: 10.1186/1471-2105-11-134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验