Suppr超能文献

古德温模型:希尔函数背后的原理。

The Goodwin model: behind the Hill function.

机构信息

Université Libre de Bruxelles, Bruxelles, Belgium.

出版信息

PLoS One. 2013 Aug 1;8(8):e69573. doi: 10.1371/journal.pone.0069573. Print 2013.

Abstract

The Goodwin model is a 3-variable model demonstrating the emergence of oscillations in a delayed negative feedback-based system at the molecular level. This prototypical model and its variants have been commonly used to model circadian and other genetic oscillators in biology. The only source of non-linearity in this model is a Hill function, characterizing the repression process. It was mathematically shown that to obtain limit-cycle oscillations, the Hill coefficient must be larger than 8, a value often considered unrealistic. It is indeed difficult to explain such a high coefficient with simple cooperative dynamics. We present here molecular models of the standard Goodwin model, based on single or multisite phosphorylation/dephosphorylation processes of a transcription factor, which have been previously shown to generate switch-like responses. We show that when the phosphorylation/dephosphorylation processes are fast enough, the limit-cycle obtained with a multisite phosphorylation-based mechanism is in very good quantitative agreement with the oscillations observed in the Goodwin model. Conditions in which the detailed mechanism is well approximated by the Goodwin model are given. A variant of the Goodwin model which displays sharp thresholds and relaxation oscillations is also explained by a double phosphorylation/dephosphorylation-based mechanism through a bistable behavior. These results not only provide rational support for the Goodwin model but also highlight the crucial role of the speed of post-translational processes, whose response curve are usually established at a steady state, in biochemical oscillators.

摘要

古德温模型是一个 3 变量模型,展示了在分子水平上基于延迟负反馈的系统中出现的振荡。这个原型模型及其变体已被广泛用于模拟生物学中的生物钟和其他遗传振荡器。该模型中唯一的非线性来源是描述抑制过程的 Hill 函数。数学上表明,要获得极限环振荡,Hill 系数必须大于 8,这个值通常被认为是不现实的。确实很难用简单的协同动力学来解释这样高的系数。我们在这里提出了标准古德温模型的分子模型,这些模型基于转录因子的单或多磷酸化/去磷酸化过程,这些过程先前已被证明可以产生开关样响应。我们表明,当磷酸化/去磷酸化过程足够快时,基于多磷酸化机制获得的极限环与古德温模型中观察到的振荡非常吻合。给出了详细机制很好地近似古德温模型的条件。通过双磷酸化/去磷酸化机制的双稳态行为,也解释了显示出尖锐阈值和弛豫振荡的古德温模型的变体。这些结果不仅为古德温模型提供了合理的支持,还强调了翻译后过程的速度在生化振荡器中的关键作用,其响应曲线通常在稳态下建立。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/547e/3731313/9d4c5a22ecbf/pone.0069573.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验