Suppr超能文献

超敏感性第三部分:级联反应、双稳开关与振荡器

Ultrasensitivity part III: cascades, bistable switches, and oscillators.

作者信息

Ferrell James E, Ha Sang Hoon

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA.

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA.

出版信息

Trends Biochem Sci. 2014 Dec;39(12):612-8. doi: 10.1016/j.tibs.2014.10.002. Epub 2014 Nov 10.

Abstract

Switch-like, ultrasensitive responses - responses that resemble those of cooperative enzymes but are not necessarily generated by cooperativity - are widespread in signal transduction. In the previous installments in this series, we reviewed several mechanisms for generating ultrasensitivity: zero-order ultrasensitivity; multistep ultrasensitivity; inhibitor ultrasensitivity; and positive feedback (or double negative feedback) loops. In this review, we focus on how ultrasensitive components can be important for the functioning of more complex signaling circuits. Ultrasensitivity can allow the effective transmission of signals down a signaling cascade, can contribute to the generation of bistability by positive feedback, and can promote the production of biochemical oscillations in negative feedback loops. This makes ultrasensitivity a key building block in systems biology and synthetic biology.

摘要

开关式超敏反应——类似于协同酶的反应,但不一定由协同作用产生——在信号转导中广泛存在。在本系列的前几期文章中,我们回顾了几种产生超敏反应的机制:零级超敏反应;多步超敏反应;抑制剂超敏反应;以及正反馈(或双负反馈)回路。在这篇综述中,我们关注超敏成分如何对更复杂的信号传导回路的功能发挥重要作用。超敏反应可以使信号有效地沿着信号级联向下传递,通过正反馈有助于产生双稳态,并能在负反馈回路中促进生化振荡的产生。这使得超敏反应成为系统生物学和合成生物学中的关键组成部分。

相似文献

1
Ultrasensitivity part III: cascades, bistable switches, and oscillators.
Trends Biochem Sci. 2014 Dec;39(12):612-8. doi: 10.1016/j.tibs.2014.10.002. Epub 2014 Nov 10.
2
Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity.
Trends Biochem Sci. 2014 Oct;39(10):496-503. doi: 10.1016/j.tibs.2014.08.003. Epub 2014 Sep 18.
3
How robust are switches in intracellular signaling cascades?
J Theor Biol. 2003 Dec 7;225(3):293-300. doi: 10.1016/s0022-5193(03)00247-9.
4
Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback.
Trends Biochem Sci. 2014 Nov;39(11):556-69. doi: 10.1016/j.tibs.2014.09.003. Epub 2014 Oct 23.
5
Network switches and their role in circadian clocks.
J Biol Chem. 2024 May;300(5):107220. doi: 10.1016/j.jbc.2024.107220. Epub 2024 Mar 22.
6
7
Robust network topologies for generating switch-like cellular responses.
PLoS Comput Biol. 2011 Jun;7(6):e1002085. doi: 10.1371/journal.pcbi.1002085. Epub 2011 Jun 23.
8
Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements.
FEBS J. 2006 Sep;273(17):3915-26. doi: 10.1111/j.1742-4658.2006.05394.x.
9
Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades.
J Cell Biol. 2004 Feb 2;164(3):353-9. doi: 10.1083/jcb.200308060. Epub 2004 Jan 26.
10
Effects of sequestration on signal transduction cascades.
FEBS J. 2006 Mar;273(5):895-906. doi: 10.1111/j.1742-4658.2006.05105.x.

引用本文的文献

1
A minimal model for the role of Rim4 in regulating meiotic exit in budding yeast.
bioRxiv. 2025 Aug 11:2025.08.09.669466. doi: 10.1101/2025.08.09.669466.
2
Network motifs and hypermotifs in TGFβ-induced epithelial to mesenchymal transition and metastasis.
Front Syst Biol. 2023 Mar 3;3:1099951. doi: 10.3389/fsysb.2023.1099951. eCollection 2023.
4
Experimental and Mathematical Model of Platelet Hemostasis Kinetics.
Cells. 2025 May 7;14(9):677. doi: 10.3390/cells14090677.
5
Tuning Ultrasensitivity in Genetic Logic Gates Using Antisense RNA Feedback.
ACS Synth Biol. 2025 May 16;14(5):1425-1436. doi: 10.1021/acssynbio.4c00438. Epub 2025 May 7.
6
Exploring nonlinear phenomena in animal vocalizations through oscillator theory.
Philos Trans R Soc Lond B Biol Sci. 2025 Apr 3;380(1923):20240015. doi: 10.1098/rstb.2024.0015.
7
Bistable Functions and Signaling Motifs in Systems Chemistry: Taking the Next Step Toward Synthetic Cells.
Acc Chem Res. 2025 Feb 4;58(3):428-439. doi: 10.1021/acs.accounts.4c00703. Epub 2025 Jan 22.
8
Predictive genetic circuit design for phenotype reprogramming in plants.
Nat Commun. 2025 Jan 16;16(1):715. doi: 10.1038/s41467-025-56042-2.
10
From biological data to oscillator models using SINDy.
iScience. 2024 Feb 23;27(4):109316. doi: 10.1016/j.isci.2024.109316. eCollection 2024 Apr 19.

本文引用的文献

1
Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback.
Trends Biochem Sci. 2014 Nov;39(11):556-69. doi: 10.1016/j.tibs.2014.09.003. Epub 2014 Oct 23.
2
Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity.
Trends Biochem Sci. 2014 Oct;39(10):496-503. doi: 10.1016/j.tibs.2014.08.003. Epub 2014 Sep 18.
3
Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos.
PLoS Biol. 2014 Feb 11;12(2):e1001788. doi: 10.1371/journal.pbio.1001788. eCollection 2014 Feb.
4
The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch.
Nat Cell Biol. 2013 May;15(5):519-25. doi: 10.1038/ncb2737. Epub 2013 Apr 28.
5
Modeling the cell cycle: why do certain circuits oscillate?
Cell. 2011 Mar 18;144(6):874-85. doi: 10.1016/j.cell.2011.03.006.
6
Ultrasensitivity in the Regulation of Cdc25C by Cdk1.
Mol Cell. 2011 Feb 4;41(3):263-74. doi: 10.1016/j.molcel.2011.01.012.
7
Reliability of transcriptional cycles and the yeast cell-cycle oscillator.
PLoS Comput Biol. 2010 Jul 8;6(7):e1000842. doi: 10.1371/journal.pcbi.1000842.
8
Building biological memory by linking positive feedback loops.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):175-80. doi: 10.1073/pnas.0908314107. Epub 2009 Dec 14.
9
A fast, robust and tunable synthetic gene oscillator.
Nature. 2008 Nov 27;456(7221):516-9. doi: 10.1038/nature07389. Epub 2008 Oct 29.
10
Global control of cell-cycle transcription by coupled CDK and network oscillators.
Nature. 2008 Jun 12;453(7197):944-7. doi: 10.1038/nature06955. Epub 2008 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验