Suppr超能文献

利用网络进行基因功能计算预测的进展与挑战

Progress and challenges in the computational prediction of gene function using networks.

作者信息

Pavlidis Paul, Gillis Jesse

机构信息

Centre for High-Throughput Biology and Department of Psychiatry, University of British Columbia, Vancouver, V6T1Z4, Canada.

Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY, 11797, USA.

出版信息

F1000Res. 2012 Sep 7;1:14. doi: 10.12688/f1000research.1-14.v1. eCollection 2012.

Abstract

In this opinion piece, we attempt to unify recent arguments we have made that serious confounds affect the use of network data to predict and characterize gene function. The development of computational approaches to determine gene function is a major strand of computational genomics research. However, progress beyond using BLAST to transfer annotations has been surprisingly slow. We have previously argued that a large part of the reported success in using "guilt by association" in network data is due to the tendency of methods to simply assign new functions to already well-annotated genes. While such predictions will tend to be correct, they are generic; it is true, but not very helpful, that a gene with many functions is more likely to have any function. We have also presented evidence that much of the remaining performance in cross-validation cannot be usefully generalized to new predictions, making progressive improvement in analysis difficult to engineer. Here we summarize our findings about how these problems will affect network analysis, discuss some ongoing responses within the field to these issues, and consolidate some recommendations and speculation, which we hope will modestly increase the reliability and specificity of gene function prediction.

摘要

在这篇观点文章中,我们试图整合近期我们所提出的观点,即严重的混杂因素影响了利用网络数据预测和描述基因功能的过程。确定基因功能的计算方法的发展是计算基因组学研究的一个主要方向。然而,除了使用BLAST来转移注释之外,进展一直出奇地缓慢。我们之前曾指出,在网络数据中使用“关联有罪”方法所报告的大部分成功,是由于方法倾向于简单地将新功能分配给已经注释完善的基因。虽然这样的预测往往是正确的,但它们是一般性的;一个具有多种功能的基因更有可能具有任何一种功能,这是事实,但并没有太大帮助。我们还提供了证据表明,交叉验证中剩余的大部分性能无法有效地推广到新的预测中,这使得分析的逐步改进难以实现。在此,我们总结关于这些问题将如何影响网络分析的研究结果,讨论该领域对这些问题正在进行的一些应对措施,并整合一些建议和推测,我们希望这些将适度提高基因功能预测的可靠性和特异性。

相似文献

2
5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
A close look at protein function prediction evaluation protocols.深入研究蛋白质功能预测评估方案。
Gigascience. 2015 Sep 14;4:41. doi: 10.1186/s13742-015-0082-5. eCollection 2015.
9
10
Towards revealing the functions of all genes in plants.揭示植物中所有基因的功能。
Trends Plant Sci. 2014 Apr;19(4):212-21. doi: 10.1016/j.tplants.2013.10.006. Epub 2013 Nov 11.

引用本文的文献

5
Text mining in cancer gene and pathway prioritization.癌症基因和通路优先级确定中的文本挖掘
Cancer Inform. 2014 Oct 13;13(Suppl 1):69-79. doi: 10.4137/CIN.S13874. eCollection 2014.

本文引用的文献

5
The role of indirect connections in gene networks in predicting function.基因网络中间接连接在预测功能中的作用。
Bioinformatics. 2011 Jul 1;27(13):1860-6. doi: 10.1093/bioinformatics/btr288. Epub 2011 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验