Hunjak Tamara, Lutz Hans O, Roller-Lutz Zvjezdana
a Stable Isotope Laboratory , Medical Faculty, Rijeka University , Rijeka , Croatia.
Isotopes Environ Health Stud. 2013;49(3):336-45. doi: 10.1080/10256016.2013.816697. Epub 2013 Aug 13.
The precipitation is the input into the water system. Its stable isotope composition has to be known for the proper use and management of water resources. Croatia is not well represented in the Global Network of Isotopes in Precipitation (GNIP) database, and the geomorphology of the country causes specific local conditions. Therefore, at the Stable Isotope Laboratory (SILab), Rijeka, we monitor the stable isotope composition (δ(18)O, δ(2)H) of precipitation. Since δ(18)O and δ(2)H are well correlated, we concentrate the discussion on the δ(18)O distribution. Together with GNIP, our database contains 40 stations in Croatia and in the neighbouring countries. Their different latitudes, longitudes and altitudes give information of great detail, including the influence of the topographic structure on the precipitation in the south-eastern part of Europe, as well as the complex interplay of the different climate conditions in the area. Within a few hundred kilometres, the stable isotope values display a significant change from the maritime character in the south (mean δ(18)O around-6 to-8‰) to the continental behaviour in the north (mean δ(18)O around-8 to-11‰). Depending on the location, the mean δ(18)O values vary with altitude at a rate of approximately-0.2‰/100 m and-0.4‰/100 m, respectively. Also the deuterium excess has been found to depend on location and altitude. The data are being used to construct a δ(18)O map for the entire area.
降水是进入水系统的输入量。为了合理利用和管理水资源,必须了解其稳定同位素组成。克罗地亚在全球降水同位素网络(GNIP)数据库中的代表性不足,而且该国的地貌导致了特定的局部条件。因此,在里耶卡的稳定同位素实验室(SILab),我们监测降水的稳定同位素组成(δ(18)O、δ(2)H)。由于δ(18)O和δ(2)H具有良好的相关性,我们将讨论集中在δ(18)O分布上。我们的数据库与GNIP一起,包含了克罗地亚及周边国家的40个站点。它们不同的纬度、经度和海拔提供了非常详细的信息,包括地形结构对欧洲东南部降水的影响,以及该地区不同气候条件的复杂相互作用。在几百公里的范围内,稳定同位素值呈现出显著变化,从南部的海洋性特征(平均δ(18)O约为-6至-8‰)到北部的大陆性特征(平均δ(18)O约为-8至-11‰)。根据位置的不同,平均δ(18)O值随海拔高度的变化率分别约为-0.2‰/100米和-0.4‰/100米。氘过量也被发现取决于位置和海拔高度。这些数据正被用于绘制整个区域的δ(18)O地图。