Ou Shuching, Cui Di, Patel Sandeep
Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States.
J Phys Chem B. 2013 Oct 3;117(39):11719-31. doi: 10.1021/jp405862p. Epub 2013 Sep 16.
The guanidinium cation (C(NH2)3(+)) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules ("salting-in") and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that, near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte's interaction with hydrophobic interfaces as they impact protein denaturation (solubilization).
胍阳离子(C(NH2)3(+))在水溶液中是一种高度稳定的阳离子,这归因于其能被水分子有效溶剂化以及电荷的共振稳定作用。其盐类可增加非极性分子的溶解度(“盐溶”)并降低水的有序性。它是蛋白质折叠生物物理研究中使用的最强变性剂之一。我们使用原子分子动力学(MD)模拟和平均力势计算,研究了胍及其衍生物甲基胍(一种氨基酸类似物)在气-水表面的行为。甲基胍阳离子比胍阳离子更不容易被气-水表面排斥,但两种阳离子都表现出表面亲和力的取向依赖性。胍环的平行取向(相对于吉布斯分界面)在界面区域显示出明显的自由能最小值,而垂直于吉布斯分界面的环取向则没有明显的表面稳定性。表面波动的计算表明,在气-水表面附近,与其他取向相比,平行取向的阳离子产生的界面波动明显更大,这会引发更多的长程扰动和溶剂密度重新分布。我们的结果表明诱导界面波动与离子表面稳定性之间存在很强的相关性。这些结果对于解释这种渗透溶质与疏水界面相互作用的分子水平机械作用具有重要意义,因为它们会影响蛋白质变性(溶解)。