Department of Chemical Engineering, National Taiwan University of Science and Technology , Section 4, #43, Keelung Road, Taipei 106, Taiwan , Republic of China.
ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8740-52. doi: 10.1021/am402547e. Epub 2013 Aug 23.
This article describes a CuInS2 quantum dot (QD)-sensitized solar cell (QDSSC) with a multilayered architecture and a cascaded energy-gap structure fabricated using a successive ionic-layer adsorption and reaction process. We initially used different metal chalcogenides as interfacial buffer layers to improve unmatched band alignments between the TiO2 and CuInS2 QD sensitizers. In this design, the photovoltaic performance, in terms of the short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE), was significantly improved. Both JSC and VOC were improved in CuInS2-based QDSSCs in the presence of interfacial buffer layers because of proper band alignment across the heterointerface and the negative band edge movement of TiO2. The PCE of CuInS2-based QDSSCs containing In2Se3 interfacial buffer layers was 1.35%, with JSC=5.83 mA/cm2, VOC=595 mV, and FF=39.0%. We also examined the use of alternative CdS and CdSe hybrid-sensitized layers, which were sequentially deposited onto the In2Se3/CuInS2 configuration for creating favorable cascaded energy-gap structures. Both JSC (11.3 mA cm(-2)) and FF (47.3%) for the CuInS2/CdSe hybrid-sensitized cells were higher than those for CuInS2-based cells (JSC=5.83 mA cm(-2) and FF=39.0%). In addition, the hybrid-sensitized cells had PCEs that were 1.3 times those of cells containing identically pretreated In2Se3 interfacial buffer layers. Additionally, we determined that ZnSe served as a good passivation layer on the surface of CuInS2/CdSe hybrid-sensitized QDs, prevented current leakage from the QDs to electrolytes, and lowered interfacial charge recombination. Under simulated illumination (AM 1.5, 100 mW cm(-2)), multilayered QDSSCs with distinct architectures delivered a maximum external quantum efficiency of 80% at 500 nm and a maximum PCE of 4.55%, approximately 9 times that of QDSSCs fabricated with pristine CuInS2.
本文描述了一种使用逐层离子吸附和反应工艺制备的具有多层结构和级联能隙结构的 CuInS2 量子点(QD)敏化太阳能电池(QDSSC)。我们最初使用不同的金属硫属化物作为界面缓冲层,以改善 TiO2 和 CuInS2 QD 敏化剂之间不匹配的能带排列。在这种设计中,通过适当的能带对准和 TiO2 的负能带边缘移动,基于 CuInS2 的 QDSSC 的短路电流密度(JSC)、开路电压(VOC)、填充因子(FF)和功率转换效率(PCE)等光电性能得到了显著提高。在含有界面缓冲层的基于 CuInS2 的 QDSSC 中,JSC 和 VOC 均得到提高,这是由于异质界面上的能带排列正确和 TiO2 的负能带边缘移动。含有 In2Se3 界面缓冲层的基于 CuInS2 的 QDSSC 的 PCE 为 1.35%,JSC=5.83 mA/cm2,VOC=595 mV,FF=39.0%。我们还研究了替代 CdS 和 CdSe 杂化敏化层的使用,它们被顺序沉积在 In2Se3/CuInS2 结构上,以形成有利的级联能隙结构。CuInS2/CdSe 杂化敏化电池的 JSC(11.3 mA cm(-2))和 FF(47.3%)均高于基于 CuInS2 的电池(JSC=5.83 mA cm(-2)和 FF=39.0%)。此外,杂化敏化电池的 PCE 是含有相同预处理 In2Se3 界面缓冲层的电池的 1.3 倍。此外,我们发现 ZnSe 可以很好地钝化 CuInS2/CdSe 杂化敏化量子点的表面,防止电流从量子点漏到电解质中,并降低界面电荷复合。在模拟照明(AM 1.5,100 mW cm(-2))下,具有不同结构的多层 QDSSC 的最大外量子效率为 500nm 时为 80%,最大 PCE 为 4.55%,大约是使用原始 CuInS2 制备的 QDSSC 的 9 倍。