Suppr超能文献

细胞质流动的微流体学及其对细胞内运输的影响。

Microfluidics of cytoplasmic streaming and its implications for intracellular transport.

作者信息

Goldstein Raymond E, Tuval Idan, van de Meent Jan-Willem

机构信息

Department of Applied Mathematics and Theoretical Physics and Cambridge Computational Biology Institute, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3663-7. doi: 10.1073/pnas.0707223105. Epub 2008 Feb 29.

Abstract

Found in many large eukaryotic cells, particularly in plants, cytoplasmic streaming is the circulation of their contents driven by fluid entrainment from particles carried by molecular motors at the cell periphery. In the more than two centuries since its discovery, streaming has frequently been conjectured to aid in transport and mixing of molecular species in the cytoplasm and, by implication, in cellular homeostasis, yet no theoretical analysis has been presented to quantify these processes. We show by a solution to the coupled dynamics of fluid flow and diffusion appropriate to the archetypal "rotational streaming" of algal species such as Chara and Nitella that internal mixing and the transient dynamical response to changing external conditions can indeed be enhanced by streaming, but to an extent that depends strongly on the pitch of the helical flow. The possibility that this may have a developmental consequence is illustrated by the coincidence of the exponential growth phase of Nitella and the point of maximum enhancement of those processes.

摘要

胞质环流存在于许多大型真核细胞中,尤其是植物细胞中,它是由细胞周边分子马达携带的颗粒所产生的流体夹带作用驱动细胞内容物循环的现象。自发现以来的两个多世纪里,人们常常推测胞质环流有助于细胞质中分子的运输和混合,进而影响细胞内稳态,但尚未有理论分析来量化这些过程。我们通过求解适用于诸如轮藻属和丽藻属等藻类典型“旋转式胞质环流”的流体流动与扩散的耦合动力学问题表明,胞质环流确实能够增强内部混合以及对外部条件变化的瞬态动力学响应,但其增强程度在很大程度上取决于螺旋流的螺距。轮藻指数生长期与这些过程增强程度最大的点相吻合,这说明了胞质环流可能具有发育方面的影响。

相似文献

1
Microfluidics of cytoplasmic streaming and its implications for intracellular transport.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3663-7. doi: 10.1073/pnas.0707223105. Epub 2008 Feb 29.
2
Nature's microfluidic transporter: rotational cytoplasmic streaming at high Péclet numbers.
Phys Rev Lett. 2008 Oct 24;101(17):178102. doi: 10.1103/PhysRevLett.101.178102. Epub 2008 Oct 20.
3
Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14132-7. doi: 10.1073/pnas.1302736110. Epub 2013 Aug 12.
4
Ion flux interaction with cytoplasmic streaming in branchlets of Chara australis.
J Exp Bot. 2004 Dec;55(408):2505-12. doi: 10.1093/jxb/erh256. Epub 2004 Sep 10.
5
Cytoplasmic streaming in plant cells: the role of wall slip.
J R Soc Interface. 2012 Jun 7;9(71):1398-408. doi: 10.1098/rsif.2011.0868. Epub 2012 Feb 15.
7
Mechanosensing and anesthesia of single internodal cells of .
Plant Signal Behav. 2024 Dec 31;19(1):2339574. doi: 10.1080/15592324.2024.2339574. Epub 2024 Apr 11.
8
Chara myosin and the energy of cytoplasmic streaming.
Plant Cell Physiol. 2006 Oct;47(10):1427-31. doi: 10.1093/pcp/pcl006. Epub 2006 Sep 8.
9
Implication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cells.
Protoplasma. 2017 Jan;254(1):557-567. doi: 10.1007/s00709-016-0975-x. Epub 2016 Apr 18.
10
Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells.
Protoplasma. 2010 Apr;240(1-4):99-107. doi: 10.1007/s00709-009-0088-x. Epub 2009 Nov 25.

引用本文的文献

1
Surface Rolling Active Magnetic Emulsions.
Adv Sci (Weinh). 2025 Aug;12(32):e01866. doi: 10.1002/advs.202501866. Epub 2025 Jun 10.
3
How it feels in a cell.
Trends Cell Biol. 2023 Nov;33(11):924-938. doi: 10.1016/j.tcb.2023.05.002. Epub 2023 Jun 5.
4
Directing Min protein patterns with advective bulk flow.
Nat Commun. 2023 Jan 27;14(1):450. doi: 10.1038/s41467-023-35997-0.
5
Intercellular permeation and cyclosis-mediated transport of a fluorescent probe in Characeae.
Biophys J. 2023 Jan 17;122(2):419-432. doi: 10.1016/j.bpj.2022.11.2948. Epub 2022 Dec 5.
6
Go with the flow - bulk transport by molecular motors.
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.260300. Epub 2022 Oct 17.
7
Schrödinger's What Is Life? at 75.
Cell Syst. 2021 Jun 16;12(6):465-476. doi: 10.1016/j.cels.2021.05.013.
8
Geometrical Constraints on the Tangling of Bacterial Flagellar Filaments.
Sci Rep. 2020 May 21;10(1):8406. doi: 10.1038/s41598-020-64974-6.
9
Patterning and polarization of cells by intracellular flows.
Curr Opin Cell Biol. 2020 Feb;62:123-134. doi: 10.1016/j.ceb.2019.10.005. Epub 2019 Nov 21.
10
Cytoplasmic convection currents and intracellular temperature gradients.
PLoS Comput Biol. 2019 Nov 4;15(11):e1007372. doi: 10.1371/journal.pcbi.1007372. eCollection 2019 Nov.

本文引用的文献

2
The sliding theory of cytoplasmic streaming: fifty years of progress.
J Plant Res. 2007 Jan;120(1):31-43. doi: 10.1007/s10265-006-0061-0. Epub 2007 Jan 25.
3
Vacuolar transporters and their essential role in plant metabolism.
J Exp Bot. 2007;58(1):83-102. doi: 10.1093/jxb/erl183. Epub 2006 Nov 16.
4
Flows driven by flagella of multicellular organisms enhance long-range molecular transport.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8315-9. doi: 10.1073/pnas.0600566103. Epub 2006 May 17.
6
Multicellularity and the functional interdependence of motility and molecular transport.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1353-8. doi: 10.1073/pnas.0503810103. Epub 2006 Jan 18.
7
Absorption by a moving spherical organelle in a heterogeneous cytoplasm: implications for the role of trafficking in a symplast.
J Theor Biol. 2006 May 21;240(2):288-301. doi: 10.1016/j.jtbi.2005.09.008. Epub 2005 Nov 28.
9
Fluid vesicles with viscous membranes in shear flow.
Phys Rev Lett. 2004 Dec 17;93(25):258102. doi: 10.1103/PhysRevLett.93.258102. Epub 2004 Dec 13.
10
Self-concentration and large-scale coherence in bacterial dynamics.
Phys Rev Lett. 2004 Aug 27;93(9):098103. doi: 10.1103/PhysRevLett.93.098103. Epub 2004 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验