Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil.
PLoS One. 2013 Aug 5;8(8):e70880. doi: 10.1371/journal.pone.0070880. Print 2013.
Sulfation patterns along glycosaminoglycan (GAG) chains dictate their functional role. The N-deacetylase N-sulfotransferase family (NDST) catalyzes the initial downstream modification of heparan sulfate and heparin chains by removing acetyl groups from subsets of N-acetylglucosamine units and, subsequently, sulfating the residual free amino groups. These enzymes transfer the sulfuryl group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS), yielding sulfated sugar chains and 3'-phosphoadenosine-5'-phosphate (PAP). For the N-sulfotransferase domain of NDST1, Lys833 has been implicated to play a role in holding the substrate glycan moiety close to the PAPS cofactor. Additionally, Lys833 together with His716 interact with the sulfonate group, stabilizing the transition state. Such a role seems to be shared by Lys614 through donation of a proton to the bridging oxygen of the cofactor, thereby acting as a catalytic acid. However, the relevance of these boundary residues at the hydrophobic cleft is still unclear. Moreover, whether Lys833, His716 and Lys614 play a role in both glycan recognition and glycan sulfation remains elusive. In this study we evaluate the contribution of NDST mutants (Lys833, His716 and Lys614) to dynamical effects during sulfate transfer using comprehensive combined docking and essential dynamics. In addition, the binding location of the glycan moiety, PAPS and PAP within the active site of NDST1 throughout the sulfate transfer were determined by intermediate state analysis. Furthermore, NDST1 mutants unveiled Lys833 as vital for both the glycan binding and subsequent N-sulfotransferase activity of NDST1.
糖胺聚糖 (GAG) 链上的硫酸化模式决定了它们的功能作用。N-去乙酰基-N-磺基转移酶家族 (NDST) 通过从 N-乙酰葡萄糖胺单元的亚组中去除乙酰基,随后对残留的游离氨基进行磺化,催化肝素硫酸和肝素链的初始下游修饰。这些酶将硫酸基从 3'-磷酸腺苷-5'-磷酸硫酸 (PAPS) 转移到糖链上,生成硫酸化的糖链和 3'-磷酸腺苷-5'-磷酸 (PAP)。对于 NDST1 的 N-磺基转移酶结构域,已经有研究表明 Lys833 参与将底物糖基部分保持在 PAPS 辅因子附近。此外,Lys833 与 His716 相互作用与硫酸根基团结合,稳定过渡态。这种作用似乎通过向辅因子的桥氧供质子,由 Lys614 共享,从而充当催化酸。然而,疏水裂缝中这些边界残基的相关性仍然不清楚。此外,Lys833、His716 和 Lys614 是否在糖基识别和糖基磺化中都起作用仍然难以捉摸。在这项研究中,我们使用综合的对接和基本动力学方法来评估 NDST 突变体 (Lys833、His716 和 Lys614) 对硫酸转移过程中动力学效应的贡献。此外,通过中间态分析确定了 NDST1 活性位点内糖基部分、PAPS 和 PAP 在 NDST1 硫酸转移过程中的结合位置。此外,NDST1 突变体揭示了 Lys833 对 NDST1 的糖基结合和随后的 N-磺基转移酶活性都至关重要。