Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, South Korea.
Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Bioresour Technol. 2013 Oct;146:274-281. doi: 10.1016/j.biortech.2013.07.081. Epub 2013 Jul 24.
In order to produce 2,3-butanediol (2,3-BD) with a high titer, it is necessary to engineer Saccharomyces cerevisiae by deleting the competing pathway and overexpressing the 2,3-BD biosynthetic pathway. A pyruvate decarboxylase (Pdc)-deficient mutant was constructed and evolved for rapid glucose consumption without ethanol production. Genome re-sequencing of the evolved strain (SOS4) revealed a point mutation (A81P) in MTH1 coding for a transcriptional regulator involved in glucose sensing, unlike the previously reported Pdc-deficient mutant which had internal deletion in MTH1. When alsS and alsD genes from Bacillus subtilis, and endogenous BDH1 gene were overexpressed in SOS4, the resulting strain (BD4) not only produced 2,3-BD efficiently, but also consumed glucose faster than the parental strain. In fed-batch fermentation with optimum aeration, 2,3-BD concentration increased up to 96.2 g/L. These results suggest that S. cerevisiae might be a promising host for producing 2,3-BD for industrial applications.
为了生产高浓度的 2,3-丁二醇(2,3-BD),有必要通过删除竞争途径并过表达 2,3-BD 生物合成途径来工程化酿酒酵母。构建了一个丙酮酸脱羧酶(Pdc)缺陷突变体,并对其进行了进化,以实现快速消耗葡萄糖而不产生乙醇。对进化菌株(SOS4)的基因组重测序显示,MTH1 编码的转录调节剂发生了点突变(A81P),该基因参与葡萄糖感应,而不同于先前报道的 Pdc 缺陷突变体,其 MTH1 内部缺失。当来自枯草芽孢杆菌的 alsS 和 alsD 基因以及内源性 BDH1 基因在 SOS4 中过表达时,产生的菌株(BD4)不仅高效地生产 2,3-BD,而且比亲本菌株更快地消耗葡萄糖。在优化通气的分批补料发酵中,2,3-BD 浓度增加到 96.2 g/L。这些结果表明,酿酒酵母可能是用于工业应用生产 2,3-BD 的有前途的宿主。