Suppr超能文献

MTH1 中的内部缺失使缺乏丙酮酸脱羧酶、不能发酵的酿酒酵母能够在葡萄糖上生长。

An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.

机构信息

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

Microb Cell Fact. 2012 Sep 15;11:131. doi: 10.1186/1475-2859-11-131.

Abstract

BACKGROUND

Pyruvate-decarboxylase negative (Pdc⁻) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc⁻S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc⁻ strains cannot grow on high glucose concentrations and require C₂-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry.

RESULTS

Genetic analysis of a Pdc⁻ strain previously evolved to overcome these deficiencies revealed a 225 p in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc⁻ strain enabled growth on 20 g l⁻¹ glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h⁻¹) similar to that of the evolved Pdc⁻ strain (0.23 h⁻¹). Furthermore, the reverse engineered Pdc⁻ strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h⁻¹) than the evolved strain (0.20 h⁻¹). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc⁻S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc⁻ strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C₂-compound auxotrophy.

CONCLUSIONS

In this study we have discovered and characterised a mutation in MTH1 enabling Pdc⁻ strains to grow on glucose as the sole carbon source. This successful example of reverse engineering not only increases the understanding of the glucose tolerance of evolved Pdc⁻ S. cerevisiae, but also allows introduction of this portable genetic element into various industrial yeast strains, thereby simplifying metabolic engineering strategies.

摘要

背景

丙酮酸脱羧酶阴性(Pdc⁻)酿酒酵母菌株将这种酵母的稳健性和高糖酵解能力与无酒精发酵相结合。这使得 Pdc⁻酿酒酵母成为一种很有前途的平台,可以有效地将葡萄糖转化为丙酮酸衍生产物,而不会产生乙醇作为副产物。然而,Pdc⁻菌株不能在高葡萄糖浓度下生长,并且需要 C₂化合物(乙醇或乙酸盐)才能在低葡萄糖浓度条件下生长,这迄今为止限制了其在工业中的应用。

结果

对以前进化以克服这些缺陷的 Pdc⁻菌株进行的遗传分析表明,MTH1 中存在一个 225 个碱基对的内含子缺失,该基因编码参与葡萄糖感应的转录调节剂。该内含子缺失包含一个磷酸化位点,该位点是降解所必需的,因此推测该蛋白的稳定性增加。将这种替代的 MTH1 等位基因反向工程到非进化的 Pdc⁻菌株中,可使其在最大比生长速率(0.24 h⁻¹)与进化的 Pdc⁻菌株(0.23 h⁻¹)相似的情况下,在 20 g l⁻¹ 葡萄糖和 0.3%(v/v)乙醇下生长。此外,反向工程的 Pdc⁻菌株可以以葡萄糖作为唯一碳源生长,尽管比进化菌株(0.20 h⁻¹)的比生长速率(0.10 h⁻¹)低。野生型 MTH1 等位基因过表达也恢复了 Pdc⁻酿酒酵母在葡萄糖上生长的观察结果与假设一致,即内含子缺失导致 Mth1 的降解减少。已证明 Mth1 降解减少会导致己糖转运的失调。在 Pdc⁻菌株中,葡萄糖摄取减少可能防止丙酮酸在细胞内积累和/或氧化还原问题,而由于 MTH1 内含子缺失导致的 C₂化合物营养缺陷的缓解可能有助于缓解。

结论

在这项研究中,我们发现并鉴定了 MTH1 中的突变,使 Pdc⁻菌株能够以葡萄糖作为唯一碳源生长。这种反向工程的成功范例不仅增加了对进化的 Pdc⁻酿酒酵母葡萄糖耐受性的理解,而且还可以将这种便携式遗传元件引入各种工业酵母菌株中,从而简化代谢工程策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/166b/3503853/1ba176cd1f54/1475-2859-11-131-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验