Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
mBio. 2013 Aug 13;4(4):e00540-13. doi: 10.1128/mBio.00540-13.
SurA is a component of the periplasmic chaperone network that plays a central role in biogenesis of integral outer membrane β-barrel proteins (OMPs) in Escherichia coli. Although SurA contains two well-conserved proline isomerase (PPIase) domains, the contribution of these domains to SurA function is unclear. In the present work, we show that defects in OMP assembly caused by mutation of the β-barrel assembly factors BamA or BamB can be corrected by gain-of-function mutations in SurA that map to the first PPIase domain. These mutations apparently bypass the requirement for a stable interaction between SurA and the Bam complex and enhance SurA chaperone activity in vivo despite destabilization of the protein in vitro. Our findings suggest an autoinhibitory mechanism for regulation of SurA chaperone activity through interdomain interactions involving a PPIase domain. We propose a model in which SurA activity is modulated by an interaction between SurA and the Bam complex that alters the substrate specificity of the chaperone.
The dominant surA mutations described here alter amino acid residues that are highly conserved in eukaryotic homologs of SurA, including Pin 1, the human proline isomerase (PPIase) implicated in Alzheimer's disease and certain cancers. Consequently, a mechanistic description of SurA function may enhance our understanding of clinically important PPIases and their role(s) in disease. In addition, the virulence of Gram-negative bacterial pathogens, such as Salmonella, Shigella, and Escherichia coli O157:H7, is largely dependent on SurA, making this PPIase/chaperone an attractive antibiotic target. Investigating the function of SurA in outer membrane (OM) biogenesis will be useful in the development of novel therapeutic strategies for the disruption of the OM or the processes that are essential for its assembly.
SurA 是周质伴侣网络的一个组成部分,在大肠杆菌中整合的外膜 β-桶状蛋白 (OMP) 的生物发生中发挥核心作用。尽管 SurA 含有两个保守的脯氨酸异构酶 (PPIase) 结构域,但这些结构域对 SurA 功能的贡献尚不清楚。在本工作中,我们表明,由 β-桶组装因子 BamA 或 BamB 的突变引起的 OMP 组装缺陷可以通过映射到第一个 PPIase 结构域的 SurA 功能获得性突变来纠正。这些突变显然绕过了 SurA 与 Bam 复合物之间稳定相互作用的要求,并增强了 SurA 在体内的伴侣活性,尽管体外蛋白不稳定。我们的发现表明,SurA 伴侣活性的调节存在自动抑制机制,涉及涉及 PPIase 结构域的结构域间相互作用。我们提出了一个模型,其中 SurA 活性通过 SurA 与 Bam 复合物之间的相互作用来调节,该相互作用改变了伴侣的底物特异性。
此处描述的优势 surA 突变改变了在 SurA 的真核同源物中高度保守的氨基酸残基,包括 Pin 1,这是一种与人阿尔茨海默病和某些癌症相关的脯氨酸异构酶 (PPIase)。因此,对 SurA 功能的机制描述可能会增强我们对临床上重要的 PPIase 及其在疾病中的作用的理解。此外,革兰氏阴性细菌病原体(如沙门氏菌、志贺氏菌和大肠杆菌 O157:H7)的毒力在很大程度上依赖于 SurA,这使得这种 PPIase/伴侣成为有吸引力的抗生素靶标。研究 SurA 在 OMP 生物发生中的功能将有助于开发破坏 OMP 或其组装所必需的过程的新型治疗策略。