Soltes Garner R, Schwalm Jaclyn, Ricci Dante P, Silhavy Thomas J
Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
J Bacteriol. 2016 Jan 4;198(6):921-9. doi: 10.1128/JB.00889-15.
The periplasmic chaperone SurA is critical for the biogenesis of outer membrane proteins (OMPs) and, thus, the maintenance of membrane integrity in Escherichia coli. The activity of this modular chaperone has been attributed to a core chaperone module, with only minor importance assigned to the two SurA peptidyl-prolyl isomerase (PPIase) domains. In this work, we used synthetic phenotypes and covalent tethering to demonstrate that the activity of SurA is regulated by its PPIase domains and, furthermore, that its activity is correlated with the conformational state of the chaperone. When combined with mutations in the β-barrel assembly machine (BAM), SurA mutations resulting in deletion of the second parvulin domain (P2) inhibit OMP assembly, suggesting that P2 is involved in the regulation of SurA. The first parvulin domain (P1) potentiates this autoinhibition, as mutations that covalently tether the P1 domain to the core chaperone module severely impair OMP assembly. Furthermore, these inhibitory mutations negate the suppression of and biochemically stabilize the protein specified by a well-characterized gain-of-function mutation in P1, demonstrating that SurA cycles between distinct conformational and functional states during the OMP assembly process.
This work reveals the reversible autoinhibition of the SurA chaperone imposed by a heretofore underappreciated parvulin domain. Many β-barrel-associated outer membrane (OM) virulence factors, including the P-pilus and type I fimbriae, rely on SurA for proper assembly; thus, a mechanistic understanding of SurA function and inhibition may facilitate antibiotic intervention against Gram-negative pathogens, such as uropathogenic Escherichia coli, E. coli O157:H7, Shigella, and Salmonella. In addition, SurA is important for the assembly of critical OM biogenesis factors, such as the lipopolysaccharide (LPS) transport machine, suggesting that specific targeting of SurA may provide a useful means to subvert the OM barrier.
周质伴侣蛋白SurA对于外膜蛋白(OMP)的生物合成至关重要,因此对于维持大肠杆菌的膜完整性也很关键。这种模块化伴侣蛋白的活性一直被归因于一个核心伴侣模块,而两个SurA肽基脯氨酰异构酶(PPIase)结构域的重要性则被认为较小。在这项研究中,我们利用合成表型和共价连接来证明SurA的活性受其PPIase结构域调控,此外,其活性与伴侣蛋白的构象状态相关。当与β桶组装机器(BAM)中的突变结合时,导致第二个小菌素结构域(P2)缺失的SurA突变会抑制OMP组装,这表明P2参与了SurA的调控。第一个小菌素结构域(P1)增强了这种自抑制作用,因为将P1结构域共价连接到核心伴侣模块的突变会严重损害OMP组装。此外,这些抑制性突变消除了对P1中一个特征明确的功能获得性突变所指定蛋白质的抑制作用,并在生化上使其稳定,这表明SurA在OMP组装过程中会在不同的构象和功能状态之间循环。
这项研究揭示了一种此前未被充分认识的小菌素结构域对SurA伴侣蛋白的可逆自抑制作用。许多与β桶相关的外膜(OM)毒力因子,包括P菌毛和I型菌毛,都依赖SurA进行正确组装;因此,对SurA功能和抑制作用的机制理解可能有助于对抗革兰氏阴性病原体,如尿路致病性大肠杆菌、大肠杆菌O157:H7、志贺氏菌和沙门氏菌的抗生素干预。此外,SurA对于关键的OM生物合成因子,如脂多糖(LPS)转运机器的组装也很重要,这表明对SurA的特异性靶向可能提供一种破坏OM屏障的有用方法。