Suppr超能文献

自适应平滑:一种用于频谱分析的改进方法及其在癫痫脑电图中的应用。

Adaptive smoothing: an improved method for spectral analysis and its application to seizure EEG.

作者信息

Murro A M, King D W, Flanigin H F, Gallagher B B, Smith J R

机构信息

Department of Neurology, VAMC, Augusta, GA.

出版信息

Int J Biomed Comput. 1990 Jul;26(1-2):63-72. doi: 10.1016/0020-7101(90)90020-u.

Abstract

We describe the data adaptive smoothing method, an improved method for multichannel spectral analysis of seizure EEG. After Fast Fourier Transform of EEG data, spectra were computed by smoothing over adjacent frequency components. Using cross-validatory maximum likelihood criteria, unsmoothed spectral data were used to select the level of smoothing (spectral window effective bandwidth) required to minimize bias and variance errors. The statistical assumptions of this method are consistent with the statistical properties of seizure EEG. On computer simulation of seizure EEG, the smoothing level predicted by this method correlates strongly with the optimum smoothing level. The utility of the method is demonstrated by application to seizure EEG. The consistency of the method's statistical assumptions, the success in selection of the optimum smoothing level, and the variability in optimum smoothing required for seizure EEG suggest that the adaptive smoothing method is a useful method for multichannel spectral analysis.

摘要

我们描述了数据自适应平滑方法,这是一种用于癫痫脑电多通道频谱分析的改进方法。对脑电数据进行快速傅里叶变换后,通过对相邻频率成分进行平滑来计算频谱。使用交叉验证最大似然准则,未平滑的频谱数据用于选择最小化偏差和方差误差所需的平滑水平(频谱窗口有效带宽)。该方法的统计假设与癫痫脑电的统计特性一致。在癫痫脑电的计算机模拟中,该方法预测的平滑水平与最佳平滑水平密切相关。该方法在癫痫脑电中的应用证明了其效用。该方法统计假设的一致性、在选择最佳平滑水平方面的成功以及癫痫脑电所需最佳平滑的变异性表明,自适应平滑方法是一种用于多通道频谱分析的有用方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验