Murro A M, King D W, Flanigin H F, Gallagher B B, Smith J R
Department of Neurology, VAMC, Augusta, GA.
Int J Biomed Comput. 1990 Jul;26(1-2):63-72. doi: 10.1016/0020-7101(90)90020-u.
We describe the data adaptive smoothing method, an improved method for multichannel spectral analysis of seizure EEG. After Fast Fourier Transform of EEG data, spectra were computed by smoothing over adjacent frequency components. Using cross-validatory maximum likelihood criteria, unsmoothed spectral data were used to select the level of smoothing (spectral window effective bandwidth) required to minimize bias and variance errors. The statistical assumptions of this method are consistent with the statistical properties of seizure EEG. On computer simulation of seizure EEG, the smoothing level predicted by this method correlates strongly with the optimum smoothing level. The utility of the method is demonstrated by application to seizure EEG. The consistency of the method's statistical assumptions, the success in selection of the optimum smoothing level, and the variability in optimum smoothing required for seizure EEG suggest that the adaptive smoothing method is a useful method for multichannel spectral analysis.
我们描述了数据自适应平滑方法,这是一种用于癫痫脑电多通道频谱分析的改进方法。对脑电数据进行快速傅里叶变换后,通过对相邻频率成分进行平滑来计算频谱。使用交叉验证最大似然准则,未平滑的频谱数据用于选择最小化偏差和方差误差所需的平滑水平(频谱窗口有效带宽)。该方法的统计假设与癫痫脑电的统计特性一致。在癫痫脑电的计算机模拟中,该方法预测的平滑水平与最佳平滑水平密切相关。该方法在癫痫脑电中的应用证明了其效用。该方法统计假设的一致性、在选择最佳平滑水平方面的成功以及癫痫脑电所需最佳平滑的变异性表明,自适应平滑方法是一种用于多通道频谱分析的有用方法。