Suppr超能文献

多重网络中的共同进化和关联多重性。

Coevolution and correlated multiplexity in multiplex networks.

机构信息

Department of Physics, Korea University, Seoul 136-713, Korea.

出版信息

Phys Rev Lett. 2013 Aug 2;111(5):058702. doi: 10.1103/PhysRevLett.111.058702. Epub 2013 Jul 31.

Abstract

Distinct channels of interaction in a complex networked system define network layers, which coexist and cooperate for the system's function. Towards understanding such multiplex systems, we propose a modeling framework based on coevolution of network layers, with a class of minimalistic growing network models as working examples. We examine how the entangled growth of coevolving layers can shape the network structure and show analytically and numerically that the coevolution can induce strong degree correlations across layers, as well as modulate degree distributions. We further show that such a coevolution-induced correlated multiplexity can alter the system's response to the dynamical process, exemplified by the suppressed susceptibility to a social cascade process.

摘要

在复杂的网络系统中,不同的交互渠道定义了网络层,它们共同存在并协同工作以实现系统的功能。为了理解这种多重系统,我们提出了一个基于网络层共同进化的建模框架,并以一类极简主义的增长网络模型作为工作实例。我们研究了共同进化的层的纠缠增长如何塑造网络结构,并通过理论分析和数值模拟表明,共同进化可以在层间诱导强烈的度相关性,以及调节度分布。我们进一步表明,这种共同进化诱导的相关多重性可以改变系统对动态过程的响应,例如,对社会级联过程的敏感性降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验