Nicosia V, Bianconi G, Latora V, Barthelemy M
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, United Kingdom.
Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042807. doi: 10.1103/PhysRevE.90.042807. Epub 2014 Oct 14.
Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of nonlinear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of nonlinearity these models allow us to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which one node in each layer attracts an extensive fraction of all the edges.
不同类型的相互作用共存并共同演化,以塑造多层网络的结构和功能。我们在此提出一类通用的增长模型,其中多层网络的各层通过一组非线性偏好依附规则共同演化。我们通过数值和解析方法表明,通过调整非线性程度,这些模型能够让我们重现均匀或非均匀的度分布,以及各层之间正的或负的度相关性。特别地,我们推导出了凝聚态出现的条件,在凝聚态中每层的一个节点吸引了所有边的很大一部分。