Suppr超能文献

多重网络中的非线性增长与凝聚

Nonlinear growth and condensation in multiplex networks.

作者信息

Nicosia V, Bianconi G, Latora V, Barthelemy M

机构信息

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, United Kingdom.

Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042807. doi: 10.1103/PhysRevE.90.042807. Epub 2014 Oct 14.

Abstract

Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of nonlinear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of nonlinearity these models allow us to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which one node in each layer attracts an extensive fraction of all the edges.

摘要

不同类型的相互作用共存并共同演化,以塑造多层网络的结构和功能。我们在此提出一类通用的增长模型,其中多层网络的各层通过一组非线性偏好依附规则共同演化。我们通过数值和解析方法表明,通过调整非线性程度,这些模型能够让我们重现均匀或非均匀的度分布,以及各层之间正的或负的度相关性。特别地,我们推导出了凝聚态出现的条件,在凝聚态中每层的一个节点吸引了所有边的很大一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验