Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
Cerebellum. 2014 Feb;13(1):29-41. doi: 10.1007/s12311-013-0516-5.
Spinocerebellar ataxia type 3 (SCA3) is caused by the abnormal expansion of CAG repeats within the ataxin-3 gene. Previously, we generated transgenic mice (SCA3 mice) that express a truncated form of ataxin-3 containing abnormally expanded CAG repeats specifically in cerebellar Purkinje cells (PCs). Here, we further characterize these SCA3 mice. Whole-cell patch-clamp analysis of PCs from advanced-stage SCA3 mice revealed a significant decrease in membrane capacitance due to poor dendritic arborization and the complete absence of metabotropic glutamate receptor subtype1 (mGluR1)-mediated retrograde suppression of synaptic transmission at parallel fiber terminals, with an overall preservation of AMPA receptor-mediated fast synaptic transmission. Because these cerebellar phenotypes are reminiscent of retinoic acid receptor-related orphan receptor α (RORα)-defective staggerer mice, we examined the levels of RORα in the SCA3 mouse cerebellum by immunohistochemistry and found a marked reduction of RORα in the nuclei of SCA3 mouse PCs. To confirm that the defects in SCA3 mice were caused by postnatal deposition of mutant ataxin-3 in PCs, not by genome disruption via transgene insertion, we tried to reduce the accumulation of mutant ataxin-3 in developing PCs by viral vector-mediated expression of CRAG, a molecule that facilitates the degradation of stress proteins. Concomitant with the removal of mutant ataxin-3, CRAG-expressing PCs had greater numbers of differentiated dendrites compared to non-transduced PCs and exhibited retrograde suppression of synaptic transmission following mGluR1 activation. These results suggest that postnatal nuclear accumulation of mutant ataxin-3 disrupts dendritic differentiation and mGluR-signaling in SCA3 mouse PCs, and this disruption may be caused by a defect in a RORα-driven transcription pathway.
脊髓小脑共济失调 3 型(SCA3)是由 ataxin-3 基因内 CAG 重复异常扩增引起的。此前,我们生成了表达含有异常扩增 CAG 重复的截短形式 ataxin-3 的转基因小鼠(SCA3 小鼠),该蛋白仅在小脑浦肯野细胞(PC)中特异性表达。在这里,我们进一步对这些 SCA3 小鼠进行了特征描述。对晚期 SCA3 小鼠 PC 的全细胞膜片钳分析显示,由于树突分支不良,膜电容显著降低,代谢型谷氨酸受体 1(mGluR1)介导的平行纤维末梢突触传递的逆行抑制完全缺失,而 AMPA 受体介导的快速突触传递总体上得以保留。由于这些小脑表型类似于维甲酸受体相关孤儿受体 α(RORα)缺陷 staggerer 小鼠,我们通过免疫组织化学检查了 SCA3 小鼠小脑中的 RORα 水平,发现 SCA3 小鼠 PC 细胞核中的 RORα 明显减少。为了确认 SCA3 小鼠中的缺陷是由突变 ataxin-3 在 PC 中的出生后沉积引起的,而不是通过转基因组插入引起的基因组破坏,我们试图通过病毒载体介导表达 CRAG 来减少发育中的 PC 中突变 ataxin-3 的积累,该分子可促进应激蛋白的降解。与去除突变 ataxin-3 同时,与未转导的 PC 相比,表达 CRAG 的 PC 具有更多分化的树突,并且在 mGluR1 激活后表现出突触传递的逆行抑制。这些结果表明,突变 ataxin-3 在 SCA3 小鼠 PC 中的核内积累破坏了树突分化和 mGluR 信号传导,这种破坏可能是由 RORα 驱动的转录途径缺陷引起的。