Suppr超能文献

使用非侵入性测量的心冲击图估计夜间觉醒和睡眠效率。

Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram.

作者信息

Lee Yu-Jin G

出版信息

IEEE Trans Biomed Eng. 2014 Jan;61(1):131-8. doi: 10.1109/TBME.2013.2278020. Epub 2013 Aug 15.

Abstract

Fragmented sleep due to frequent awakenings represents a major cause of impaired daytime performance and adverse health outcomes. Currently, the gold standard for studying and assessing sleep fragmentation is polysomnography (PSG). Here, we propose an alternative method for real-time detection of nocturnal awakening via ballistocardiography using an unobtrusive polyvinylidene fluoride (PVDF) film sensor on a bed mattress. From ballistocardiogram, heart rate and body movement information were extracted to develop an algorithm for classifying sleeping and awakening epochs. In total, ten normal subjects (mean age 38.7 ± 14.6 years) and ten patients with obstructive sleep apnea (OSA) (mean age 44.2 ± 16.5 years) of varying symptom severity participated in this study. Our study detected awakening epochs with an average sensitivity of 85.3% and 85.2%, specificity of 98.4% and 97.7%, accuracy of 97.4% and 96.5%, and Cohen's kappa coefficient of 0.83 and 0.81 for normal subjects and OSA patients, respectively. Also, sleep efficiency was estimated using detected awakening epochs and then compared with PSG results. Mean absolute errors in sleep efficiency were 1.08% and 1.44% for normal subjects and OSA patients, respectively. The results presented here indicate that our suggested method could be reliably applied to real-time nocturnal awakening detection and sleep efficiency estimation. Furthermore, our method may ultimately be an effective tool for long-term, home monitoring of sleep-wake behavior.

摘要

因频繁觉醒导致的睡眠碎片化是白天表现受损和不良健康后果的主要原因。目前,研究和评估睡眠碎片化的金标准是多导睡眠图(PSG)。在此,我们提出一种替代方法,通过心冲击图实时检测夜间觉醒,该方法使用床垫上的一种不显眼的聚偏二氟乙烯(PVDF)薄膜传感器。从心冲击图中提取心率和身体运动信息,以开发一种用于对睡眠和觉醒时段进行分类的算法。共有10名正常受试者(平均年龄38.7±14.6岁)和10名阻塞性睡眠呼吸暂停(OSA)患者(平均年龄44.2±16.5岁,症状严重程度各异)参与了本研究。我们的研究检测觉醒时段的平均灵敏度分别为85.3%和85.2%,特异性分别为98.4%和97.7%,准确率分别为97.4%和96.5%,正常受试者和OSA患者的 Cohen's kappa系数分别为0.83和0.81。此外,使用检测到的觉醒时段估计睡眠效率,然后与PSG结果进行比较。正常受试者和OSA患者睡眠效率的平均绝对误差分别为1.08%和1.44%。此处呈现的结果表明,我们建议的方法可可靠地应用于实时夜间觉醒检测和睡眠效率估计。此外,我们的方法最终可能成为长期在家监测睡眠 - 觉醒行为的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验