Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States.
J Chem Inf Model. 2013 Sep 23;53(9):2462-70. doi: 10.1021/ci4003602. Epub 2013 Sep 4.
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands' positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a nontemplate geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy.
准确确定潜在配体结合位点 (BS) 是蛋白质功能表征和基于结构的药物设计的关键步骤。尽管使用全局结构比对 (GSA) 的基于模板的 BS 预测方法取得了有希望的结果,但通过适当结合局部结构比对 (LSA) 可以提高性能,因为 BS 是局部结构,对于具有不同全局折叠的蛋白质通常相似。我们提出了一种使用 G-LoSA 的基于模板的配体 BS 预测方法,G-LoSA 是我们的 LSA 工具。大型基准集验证表明,G-LoSA 比基于 GSA 的 TM-align 更准确地预测单链蛋白质靶标中药物样配体的位置,而 TM-align 的整体成功率更好。G-LoSA 特别适用于准确检测具有不同全局拓扑结构的蛋白质中保守的局部结构。认识到 G-LoSA 与 TM-align 和非模板几何形状基方法 fpocket 的性能互补性,开发了一种稳健的共识评分方法 CMCS-BSP(用于配体结合位点预测的互补方法和共识评分),并显示出预测准确性的提高。