Suppr超能文献

通过局部结构比对检测配体结合位点及其性能互补性。

Ligand binding site detection by local structure alignment and its performance complementarity.

机构信息

Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States.

出版信息

J Chem Inf Model. 2013 Sep 23;53(9):2462-70. doi: 10.1021/ci4003602. Epub 2013 Sep 4.

Abstract

Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands' positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a nontemplate geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy.

摘要

准确确定潜在配体结合位点 (BS) 是蛋白质功能表征和基于结构的药物设计的关键步骤。尽管使用全局结构比对 (GSA) 的基于模板的 BS 预测方法取得了有希望的结果,但通过适当结合局部结构比对 (LSA) 可以提高性能,因为 BS 是局部结构,对于具有不同全局折叠的蛋白质通常相似。我们提出了一种使用 G-LoSA 的基于模板的配体 BS 预测方法,G-LoSA 是我们的 LSA 工具。大型基准集验证表明,G-LoSA 比基于 GSA 的 TM-align 更准确地预测单链蛋白质靶标中药物样配体的位置,而 TM-align 的整体成功率更好。G-LoSA 特别适用于准确检测具有不同全局拓扑结构的蛋白质中保守的局部结构。认识到 G-LoSA 与 TM-align 和非模板几何形状基方法 fpocket 的性能互补性,开发了一种稳健的共识评分方法 CMCS-BSP(用于配体结合位点预测的互补方法和共识评分),并显示出预测准确性的提高。

相似文献

8
Consensus scoring for protein-ligand interactions.蛋白质-配体相互作用的共识评分
Drug Discov Today. 2006 May;11(9-10):421-8. doi: 10.1016/j.drudis.2006.03.009.

引用本文的文献

5
CHARMM-GUI for Template-Based Virtual Ligand Design in a Binding Site.CHARMM-GUI 用于结合部位基于模板的虚拟配体设计。
J Chem Inf Model. 2021 Nov 22;61(11):5336-5342. doi: 10.1021/acs.jcim.1c01156. Epub 2021 Nov 10.
7
CHARMM-GUI for Ligand Binding Site Prediction and Refinement.CHARMM-GUI 用于配体结合位点预测和精修。
J Chem Inf Model. 2021 Aug 23;61(8):3744-3751. doi: 10.1021/acs.jcim.1c00561. Epub 2021 Jul 23.

本文引用的文献

1
APoc: large-scale identification of similar protein pockets.APoc:大规模识别相似蛋白口袋。
Bioinformatics. 2013 Mar 1;29(5):597-604. doi: 10.1093/bioinformatics/btt024. Epub 2013 Jan 17.
5
Assessment of ligand-binding residue predictions in CASP9.评估 CASP9 中配体结合残基预测。
Proteins. 2011;79 Suppl 10(Suppl 10):126-36. doi: 10.1002/prot.23174. Epub 2011 Oct 11.
7
Structural conservation of druggable hot spots in protein-protein interfaces.蛋白质-蛋白质界面中可成药热点的结构保守性。
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13528-33. doi: 10.1073/pnas.1101835108. Epub 2011 Aug 1.
9
The RCSB Protein Data Bank: redesigned web site and web services.RCSB蛋白质数据库:重新设计的网站和网络服务。
Nucleic Acids Res. 2011 Jan;39(Database issue):D392-401. doi: 10.1093/nar/gkq1021. Epub 2010 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验