Department of Electrical and Computer Engineering, McGill University , 3480 University Street, Montreal, Québec H3A 0E9, Canada.
ACS Nano. 2013 Sep 24;7(9):7886-93. doi: 10.1021/nn4028823. Epub 2013 Aug 19.
The conversion of solar energy into hydrogen via water splitting process is one of the key sustainable technologies for future clean, storable, and renewable source of energy. Therefore, development of visible light-responsive and efficient photocatalyst material has been of immense interest, but with limited success. Here, we show that overall water splitting under visible-light irradiation can be achieved using a single photocatalyst material. Multiband InGaN/GaN nanowire heterostructures, decorated with rhodium (Rh)/chromium-oxide (Cr2O3) core-shell nanoparticles can lead to stable hydrogen production from pure (pH ∼ 7.0) water splitting under ultraviolet, blue and green-light irradiation (up to ∼560 nm), the longest wavelength ever reported. At ∼440-450 nm wavelengths, the internal quantum efficiency is estimated to be ∼13%, the highest value reported in the visible spectrum. The turnover number under visible light well exceeds 73 in 12 h. Detailed analysis further confirms the stable photocatalytic activity of the nanowire heterostructures. This work establishes the use of metal-nitrides as viable photocatalyst for solar-powered artificial photosynthesis for the production of hydrogen and other solar fuels.
通过水分解过程将太阳能转化为氢气是未来清洁、可存储和可再生能源的关键可持续技术之一。因此,开发对可见光响应且高效的光催化剂材料一直是人们极大的兴趣所在,但取得的成功有限。在这里,我们展示了使用单一光催化剂材料可以实现整体可见光下的水分解。多频带 InGaN/GaN 纳米线异质结构,用铑(Rh)/氧化铬(Cr2O3)核壳纳米粒子进行修饰,可以在紫外光、蓝光和绿光照射下(最长波长可达约 560nm),从纯(pH∼7.0)水中稳定地进行氢气生产,这是迄今为止报道的最长波长。在约 440-450nm 波长下,内部量子效率估计约为 13%,这是可见光光谱中报道的最高值。在可见光下的周转数在 12 小时内超过 73。详细分析进一步证实了纳米线异质结构的稳定光催化活性。这项工作确立了金属氮化物作为太阳能驱动人工光合作用生产氢气和其他太阳能燃料的可行光催化剂的使用。