Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Québec, Canada H3A 0E9.
Science des Matériaux, IREQ, Hydro-Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S1.
Nat Commun. 2015 Apr 9;6:6797. doi: 10.1038/ncomms7797.
Solar water splitting for hydrogen generation can be a potential source of renewable energy for the future. Here we show that efficient and stable stoichiometric dissociation of water into hydrogen and oxygen can be achieved under visible light by eradicating the potential barrier on nonpolar surfaces of indium gallium nitride nanowires through controlled p-type dopant incorporation. An apparent quantum efficiency of ∼12.3% is achieved for overall neutral (pH∼7.0) water splitting under visible light illumination (400-475 nm). Moreover, using a double-band p-type gallium nitride/indium gallium nitride nanowire heterostructure, we show a solar-to-hydrogen conversion efficiency of ∼1.8% under concentrated sunlight. The dominant effect of near-surface band structure in transforming the photocatalytic performance is elucidated. The stability and efficiency of this recyclable, wafer-level nanoscale metal-nitride photocatalyst in neutral water demonstrates their potential use for large-scale solar-fuel conversion.
通过控制 p 型掺杂剂的掺入,消除了非极性氮化铟镓纳米线表面的势能障碍,从而实现了高效稳定的化学计量水分解为氢气和氧气。在可见光照射下(400-475nm),中性(pH∼7.0)水的整体光解实现了约 12.3%的明显量子效率。此外,通过使用双能带 p 型氮化镓/氮化铟镓纳米线异质结构,我们在聚光太阳光下展示了约 1.8%的太阳能到氢气的转化效率。阐明了近表面能带结构在改变光催化性能方面的主导作用。这种可回收的、晶圆级纳米尺度金属氮化物光催化剂在中性水中的稳定性和效率证明了它们在大规模太阳能燃料转化中的潜在用途。