Mitchell Amanda C, Bharadwaj Rahul, Whittle Catheryne, Krueger Winfried, Mirnics Karoly, Hurd Yasmin, Rasmussen Theodore, Akbarian Schahram
Departments of Psychiatry and Neuroscience , Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
Departments of Psychiatry and Neuroscience , Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Brudnick Neuropsychiatric Research Institute , University of Massachusetts Medical School, Worcester, Massachusetts.
Biol Psychiatry. 2014 Jun 15;75(12):961-9. doi: 10.1016/j.biopsych.2013.07.015. Epub 2013 Aug 16.
Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal "loopings" are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA.
人类基因组中编码蛋白质的部分不到1.5%。然而,人类基因组的大部分区域都受到转录和表观遗传调控,许多非编码调控DNA元件被认为参与调控间期染色体的空间组织。例如,染色体“环化”对于基因表达的有序过程至关重要,它能使远端调控增强子或沉默子元件直接与近端启动子和转录起始位点相互作用,从而有可能跨越线性基因组上数百千碱基的间隔序列。然而,迄今为止,人类大脑中的表观遗传学研究大多局限于DNA甲基化和核小体核心组蛋白的翻译后修饰。相比之下,对于超核小体结构的调控却知之甚少。在这里,我们表明,染色体构象捕获这一广泛用于研究高阶染色质的方法适用于死后收集的组织,从而有助于了解人类大脑中的基因组组织。我们介绍了针对大脑的染色体构象捕获方案,并比较了6号染色体p22.2 - 22.1区域精神分裂症和双相情感障碍易感位点以及其他神经发育风险基因(DPP10、MCPH1)在成人前额叶皮质和各种细胞培养系统(包括重编程皮肤细胞衍生的神经元)中的高阶染色质结构。我们预测,对三维基因组结构和功能的探索将为人类大脑研究和精神遗传学开辟新的前沿领域,并为调控性非编码DNA的表观遗传风险结构提供新的见解。