Plant Molecular Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud (P.O), Thiruvananthapuram, 695 014 Kerala, India.
J Biol Chem. 2013 Mar 8;288(10):7271-81. doi: 10.1074/jbc.M112.429886. Epub 2013 Jan 17.
Quinolone alkaloids, found abundantly in the roots of bael (Aegle marmelos), possess various biological activities and have recently gained attention as potential lead molecules for novel drug designing. Here, we report the characterization of a novel Type III polyketide synthase, quinolone synthase (QNS), from A. marmelos that is involved in the biosynthesis of quinolone alkaloid. Using homology-based structural modeling, we identify two crucial amino acid residues (Ser-132 and Ala-133) at the putative QNS active site. Substitution of Ser-132 to Thr and Ala-133 to Ser apparently constricted the active site cavity resulting in production of naringenin chalcone from p-coumaroyl-CoA. Measurement of steady-state kinetic parameters demonstrates that the catalytic efficiency of QNS was severalfold higher for larger acyl-coenzymeA substrates as compared with smaller precursors. Our mutagenic studies suggest that this protein might have evolved from an evolutionarily related member of chalcone synthase superfamily by mere substitution of two active site residues. The identification and characterization of QNS offers a promising target for gene manipulation studies toward the production of novel alkaloid scaffolds.
根皮酮生物碱在印度酸橙(Aegle marmelos)的根部大量存在,具有多种生物活性,最近作为新型药物设计的潜在先导分子受到关注。在这里,我们报告了一种新型的 III 型聚酮合酶,即来自印度酸橙的喹诺酮合酶(QNS),其参与了根皮酮生物碱的生物合成。使用基于同源性的结构建模,我们确定了假定 QNS 活性位点中的两个关键氨基酸残基(Ser-132 和 Ala-133)。将 Ser-132 替换为 Thr 和 Ala-133 替换为 Ser 显然会限制活性位点腔,导致 p-香豆酰辅酶 A 产生柚皮素查尔酮。稳态动力学参数的测量表明,与较小的前体相比,QNS 对较大酰基辅酶 A 底物的催化效率高出数倍。我们的诱变研究表明,这种蛋白质可能是通过仅替换两个活性位点残基,从查尔酮合酶超家族的进化上相关成员进化而来的。QNS 的鉴定和表征为基因操作研究提供了有希望的目标,以生产新型生物碱支架。