Computational Biophysics, German Research School for Simulation Sciences (joint venture of RWTH Aachen University and Forschungszentrum Jülich ), D-52425 Jülich, Germany , and Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich , D-52425 Jülich, Germany.
Biochemistry. 2013 Sep 24;52(38):6672-83. doi: 10.1021/bi400367r. Epub 2013 Sep 9.
Multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy provides valuable structural information about adducts between naturally unfolded proteins and their ligands. These are often highly pharmacologically relevant. Unfortunately, the determination of the contributions to observed chemical shifts changes upon ligand binding is complicated. Here we present a tool that uses molecular dynamics (MD) trajectories to help interpret two-dimensional (2D) NMR data. We apply this tool to the naturally unfolded protein human α-synuclein interacting with dopamine, an inhibitor of fibril formation, and with its oxidation products in water solutions. By coupling 2D NMR experiments with MD simulations of the adducts in explicit water, the tool confirms with experimental data that the ligands bind preferentially to (125)YEMPS(129) residues in the C-terminal region and to a few residues of the so-called NAC region consistently. It also suggests that the ligands might cause conformational rearrangements of distal residues located at the N-terminus. Hence, the performed analysis provides a rationale for the observed changes in chemical shifts in terms of direct contacts with the ligand and conformational changes in the protein.
多维异核核磁共振(NMR)光谱为天然无规卷曲蛋白质与其配体的加合物提供了有价值的结构信息。这些配体通常具有高度的药理学相关性。不幸的是,确定配体结合引起的观察到的化学位移变化非常复杂。在这里,我们介绍了一种使用分子动力学(MD)轨迹来帮助解释二维(2D)NMR 数据的工具。我们将该工具应用于与多巴胺相互作用的天然无规卷曲蛋白人α-突触核蛋白,多巴胺是纤维形成抑制剂,以及其在水溶液中的氧化产物。通过将 2D NMR 实验与加合物在明水环境中的 MD 模拟相结合,该工具通过实验数据证实,配体优先结合到 C 末端区域的(125)YEMPS(129)残基和所谓的 NAC 区域的几个残基上。它还表明,配体可能导致位于 N 端的远端残基发生构象重排。因此,所进行的分析根据与配体的直接接触和蛋白质的构象变化,为观察到的化学位移变化提供了合理的解释。