Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Mol Brain. 2013 Aug 22;6:38. doi: 10.1186/1756-6606-6-38.
During development both Hebbian and homeostatic mechanisms regulate synaptic efficacy, usually working in opposite directions in response to neuronal activity. Homeostatic plasticity has often been investigated by assaying changes in spontaneous synaptic transmission resulting from chronic circuit inactivation. However, effects of inactivation on evoked transmission have been less frequently reported. Importantly, contributions from the effects of circuit inactivation and reactivation on synaptic efficacy have not been individuated.
Here we show for developing hippocampal neurons in primary culture that chronic inactivation with TTX results in increased mean amplitude of miniature synaptic currents (mEPSCs), but not evoked synaptic currents (eEPSCs). However, changes in quantal properties of transmission, partially reflected in mEPSCs, accurately predicted higher-order statistical properties of eEPSCs. The classical prediction of homeostasis--increased strength of evoked transmission--was realized after explicit circuit reactivation, in the form of cells' pairwise connection probability. In contrast, distributions of eEPSC amplitudes for control and inactivated-then-reactivated groups matched throughout.
Homeostatic up-regulation of evoked synaptic transmission in developing hippocampal neurons in primary culture requires both the inactivation and reactivation stages, leading to a net increase in functional circuit connectivity.
在发育过程中,赫布(Hebbian)和动态平衡(homeostatic)机制调节突触效能,通常对神经元活动的反应方向相反。动态平衡可塑性通常通过检测由于慢性回路失活而导致的自发突触传递的变化来研究。然而,失活对诱发传递的影响报告较少。重要的是,尚未确定回路失活和再激活对突触效能的贡献。
在这里,我们为原代培养的发育中的海马神经元展示,用 TTX 进行慢性失活会导致微小突触电流(mEPSCs)的平均幅度增加,但不会导致诱发的突触电流(eEPSCs)增加。然而,传输的量子特性的变化,部分反映在 mEPSCs 中,准确地预测了 eEPSCs 的高阶统计特性。动态平衡的经典预测——诱发的突触传递强度增加——在明确的回路再激活后以细胞成对连接概率的形式实现。相比之下,对照组和失活后再激活组的 eEPSC 幅度分布始终匹配。
在原代培养的发育中的海马神经元中,诱发的突触传递的动态平衡上调需要失活和再激活两个阶段,导致功能回路连接性的净增加。