Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
J Neurophysiol. 2013 Nov;110(10):2325-36. doi: 10.1152/jn.00422.2013. Epub 2013 Aug 21.
The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca(2+) channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answer this question by using two-photon laser scanning microscopy and patch-clamp electrophysiology to interrogate the dendritic synapses of SPNs in ex vivo brain slices from transgenic mice. These experiments revealed that postsynaptic action potentials induce robust ryanodine receptor (RYR)-dependent Ca(2+)-induced-Ca(2+) release (CICR) in SPN dendritic spines. Depolarization-induced opening of voltage-gated Ca(2+) channels was necessary for CICR. CICR was more robust in indirect pathway SPNs than in direct pathway SPNs, particularly in distal dendrites. Although it did not increase intracellular Ca(2+) concentration alone, group I mGluR activation enhanced CICR and slowed Ca(2+) clearance, extending the activity-evoked intraspine transient. The mGluR modulation of CICR was sensitive to antagonism of inositol trisphosphate receptors, RYRs, src kinase, and Cav1.3 L-type Ca(2+) channels. Uncaging glutamate at individual spines effectively activated mGluRs and facilitated CICR induced by back-propagating action potentials. Disrupting CICR by antagonizing RYRs prevented the induction of corticostriatal LTD with spike-timing protocols. In contrast, mGluRs had no effect on the induction of long-term potentiation. Taken together, these results make clearer how coactivation of mGluRs and L-type Ca(2+) channels promotes the induction of activity-dependent LTD in SPNs.
纹状体棘突投射神经元(SPNs)中皮质纹状体长时程抑制(LTD)的诱导需要 I 组代谢型谷氨酸受体(mGluRs)和 L 型钙(Ca2+)通道的共激活。这种组合导致内源性大麻素的突触后产生,其在突触前减少谷氨酸释放。尽管共激活的必要性是一致的,但在生理相关的环境中为什么需要共激活还不清楚。本文中的研究试图通过使用双光子激光扫描显微镜和膜片钳电生理学来研究转基因小鼠离体脑片的 SPN 树突突触,从而回答这个问题。这些实验表明,突触后动作电位在 SPN 树突棘中诱导强烈的肌醇三磷酸受体(RYR)依赖性 Ca2+-诱导的 Ca2+释放(CICR)。去极化诱导的电压门控 Ca2+通道开放对于 CICR 是必要的。CICR 在间接途径 SPN 中比在直接途径 SPN 中更强,特别是在远端树突中。尽管它本身不能增加细胞内 Ca2+浓度,但 I 组 mGluR 激活增强了 CICR 并减缓了 Ca2+清除,从而延长了活性诱导的棘间瞬变。mGluR 对 CICR 的调制对肌醇三磷酸受体、RYR、src 激酶和 Cav1.3 L 型 Ca2+通道的拮抗剂敏感。在单个棘突处解笼谷氨酸可有效激活 mGluR 并促进由反向动作电位诱导的 CICR。通过拮抗 RYR 破坏 CICR 可防止使用尖峰定时方案诱导皮质纹状体 LTD。相反,mGluR 对长时程增强(LTP)的诱导没有影响。总的来说,这些结果更清楚地表明,mGluR 和 L 型 Ca2+通道的共激活如何促进 SPN 中活性依赖性 LTD 的诱导。