Suppr超能文献

综合新生和遗传变异模型可提高识别风险基因的能力。

Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes.

机构信息

Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Genet. 2013;9(8):e1003671. doi: 10.1371/journal.pgen.1003671. Epub 2013 Aug 15.

Abstract

De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support.

摘要

从头突变影响许多疾病和障碍的风险,尤其是那些早期发病的疾病和障碍。自闭症谱系障碍(ASD)就是一个例子。最近四项对 ASD 家族进行的全外显子测序(WES)研究基于独立的同一基因中发生的从头失活(LoF)突变,发现了少数新的风险基因,并发现从头 LoF 突变的发生率是预期的两倍。然而,这些研究虽然取得了成功,但仅使用了一小部分数据,排除了其他类型的从头突变和遗传罕见变体。此外,此类分析不易纳入病例对照研究的数据。因此,基因发现的一个重要研究挑战是开发能够容纳更广泛的稀有变异类别的统计方法。我们开发了可以整合有关从头突变、存在的遗传变体以及病例和对照中鉴定的变体的 WES 数据的方法。TADA(Transmission And De novo Association)通过涉及等位基因频率和基因特异性外显率参数的基于基因的似然模型来整合这些数据。推断基于层次贝叶斯策略,该策略跨所有基因借用信息来推断难以单独为单个基因估计的参数。除了理论发展,我们还使用模拟影响 ASD 风险的稀有、大效应突变的现实模拟来验证 TADA,结果表明它比其他常见分析方法具有显著更高的功效。因此,TADA 对各种 WES 数据的整合可以是识别新的风险基因的有效手段。实际上,将 TADA 应用于 ASD 患者及其家属的 WES 数据以及 ASD 患者和对照的研究中,揭示了几个具有强大统计支持的新的和有前途的 ASD 候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0037/3744441/dc7f1cde8af5/pgen.1003671.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验