Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.
PLoS One. 2013 Aug 13;8(8):e71218. doi: 10.1371/journal.pone.0071218. eCollection 2013.
Pseudo-absence selection for spatial distribution models (SDMs) is the subject of ongoing investigation. Numerous techniques continue to be developed, and reports of their effectiveness vary. Because the quality of presence and absence data is key for acceptable accuracy of correlative SDM predictions, determining an appropriate method to characterise pseudo-absences for SDM's is vital. The main methods that are currently used to generate pseudo-absence points are: 1) randomly generated pseudo-absence locations from background data; 2) pseudo-absence locations generated within a delimited geographical distance from recorded presence points; and 3) pseudo-absence locations selected in areas that are environmentally dissimilar from presence points. There is a need for a method that considers both geographical extent and environmental requirements to produce pseudo-absence points that are spatially and ecologically balanced. We use a novel three-step approach that satisfies both spatial and ecological reasons why the target species is likely to find a particular geo-location unsuitable. Step 1 comprises establishing a geographical extent around species presence points from which pseudo-absence points are selected based on analyses of environmental variable importance at different distances. This step gives an ecologically meaningful explanation to the spatial range of background data, as opposed to using an arbitrary radius. Step 2 determines locations that are environmentally dissimilar to the presence points within the distance specified in step one. Step 3 performs K-means clustering to reduce the number of potential pseudo-absences to the desired set by taking the centroids of clusters in the most environmentally dissimilar class identified in step 2. By considering spatial, ecological and environmental aspects, the three-step method identifies appropriate pseudo-absence points for correlative SDMs. We illustrate this method by predicting the New Zealand potential distribution of the Asian tiger mosquito (Aedes albopictus) and the Western corn rootworm (Diabrotica virgifera virgifera).
用于空间分布模型(SDM)的伪缺失选择是当前研究的主题。许多技术仍在不断发展,其有效性报告也各不相同。由于存在和缺失数据的质量是相关 SDM 预测准确性的关键,因此确定用于 SDM 的伪缺失特征的适当方法至关重要。目前用于生成伪缺失点的主要方法有:1)从背景数据中随机生成伪缺失位置;2)在与记录的存在点限定地理距离内生成的伪缺失位置;3)在与存在点环境差异较大的区域选择的伪缺失位置。需要有一种方法,既能考虑地理范围,又能考虑环境要求,以生成在空间和生态上平衡的伪缺失点。我们使用一种新颖的三步方法,该方法既满足目标物种可能发现特定地理位置不合适的空间原因,也满足生态原因。第 1 步包括在物种存在点周围建立一个地理范围,根据在不同距离下环境变量重要性的分析,从该范围内选择伪缺失点。这一步为背景数据的空间范围提供了一个有意义的生态解释,而不是使用任意半径。第 2 步确定在第 1 步中指定的距离内与存在点环境不同的位置。第 3 步通过对第 2 步中确定的最不相似类别的聚类中心进行 K-均值聚类,将潜在的伪缺失点数量减少到所需的数量。通过考虑空间、生态和环境方面,三步法为相关 SDM 确定了合适的伪缺失点。我们通过预测亚洲虎蚊(Aedes albopictus)和西部玉米根虫(Diabrotica virgifera virgifera)在新西兰的潜在分布来举例说明这种方法。