Suppr超能文献

与超声激活微泡相关的特征性微血管弛豫时间尺度。

Characteristic microvessel relaxation timescales associated with ultrasound-activated microbubbles.

作者信息

Chen Hong, Brayman Andrew A, Matula Thomas J

机构信息

Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA.

出版信息

Appl Phys Lett. 2012 Oct 15;101(16):163704. doi: 10.1063/1.4761937. Epub 2012 Oct 19.

Abstract

Ultrasound-activated microbubbles were used as actuators to deform microvessels for quantifying microvessel relaxation timescales at megahertz frequencies. Venules containing ultrasound contrast microbubbles were insonified by short 1 MHz ultrasound pulses. Vessel wall forced-deformations were on the same microsecond timescale as microbubble oscillations. The subsequent relaxation of the vessel was recorded by high-speed photomicrography. The tissue was modeled as a simple Voigt solid. Relaxation time constants were measured to be on the order of ∼10 μs. The correlation coefficients between the model and 38 data sets were never lower than 0.85, suggesting this model is sufficient for modeling tissue relaxation at these frequencies. The results place a bound on potential numerical values for viscosity and elasticity of venules.

摘要

超声激活微泡被用作致动器,使微血管变形,以量化兆赫兹频率下微血管的弛豫时间尺度。含有超声造影微泡的微静脉由1兆赫兹的短超声脉冲进行超声照射。血管壁的强制变形与微泡振荡处于相同的微秒时间尺度。随后通过高速显微摄影记录血管的弛豫过程。该组织被建模为一个简单的沃伊特固体。测得的弛豫时间常数约为10微秒量级。该模型与38个数据集之间的相关系数从未低于0.85,表明该模型足以对这些频率下的组织弛豫进行建模。这些结果为微静脉的粘度和弹性的潜在数值设定了界限。

相似文献

1
Characteristic microvessel relaxation timescales associated with ultrasound-activated microbubbles.
Appl Phys Lett. 2012 Oct 15;101(16):163704. doi: 10.1063/1.4761937. Epub 2012 Oct 19.
2
Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
Ultrasonics. 2016 Mar;66:54-64. doi: 10.1016/j.ultras.2015.11.010. Epub 2015 Nov 28.
3
Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels.
Ultrasound Med Biol. 2011 Dec;37(12):2139-48. doi: 10.1016/j.ultrasmedbio.2011.09.013. Epub 2011 Oct 27.
4
A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
Phys Med Biol. 2012 Feb 7;57(3):785-808. doi: 10.1088/0031-9155/57/3/785. Epub 2012 Jan 18.
5
Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects.
Ultrasound Med Biol. 2012 Dec;38(12):2151-62. doi: 10.1016/j.ultrasmedbio.2012.08.014. Epub 2012 Oct 12.
7
Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
Phys Med Biol. 2015 Oct 21;60(20):7909-25. doi: 10.1088/0031-9155/60/20/7909. Epub 2015 Sep 25.
8
Acoustic response of compliable microvessels containing ultrasound contrast agents.
Phys Med Biol. 2006 Oct 21;51(20):5065-88. doi: 10.1088/0031-9155/51/20/001. Epub 2006 Sep 22.
9
10
Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Feb;65(2):149-167. doi: 10.1109/TUFFC.2017.2778941.

引用本文的文献

1
Microbubble dynamics in brain microvessels.
PLoS One. 2025 Feb 5;20(2):e0310425. doi: 10.1371/journal.pone.0310425. eCollection 2025.
2
Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2212933120. doi: 10.1073/pnas.2212933120. Epub 2023 May 15.
3
Enhancing carrier flux for efficient drug delivery in cancer tissues.
Biophys J. 2021 Dec 7;120(23):5255-5266. doi: 10.1016/j.bpj.2021.10.036. Epub 2021 Oct 30.
4
Contrast-Free Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening Using Diffusion Tensor Imaging.
IEEE Trans Biomed Eng. 2021 Aug;68(8):2499-2508. doi: 10.1109/TBME.2020.3047575. Epub 2021 Jul 16.
5
6
Pulse inversion enhances the passive mapping of microbubble-based ultrasound therapy.
Appl Phys Lett. 2018 Jul 23;113(4):044102. doi: 10.1063/1.5036516. Epub 2018 Jul 24.
7
In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications.
Biomicrofluidics. 2016 Jan 28;10(1):011501. doi: 10.1063/1.4940429. eCollection 2016 Jan.
8
Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.
J Acoust Soc Am. 2013 Sep;134(3):1875-85. doi: 10.1121/1.4817843.

本文引用的文献

1
Acoustic radiation force-based elasticity imaging methods.
Interface Focus. 2011 Aug 6;1(4):553-64. doi: 10.1098/rsfs.2011.0023. Epub 2011 Jun 8.
2
Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels.
Ultrasound Med Biol. 2011 Dec;37(12):2139-48. doi: 10.1016/j.ultrasmedbio.2011.09.013. Epub 2011 Oct 27.
3
Blood vessel deformations on microsecond time scales by ultrasonic cavitation.
Phys Rev Lett. 2011 Jan 21;106(3):034301. doi: 10.1103/PhysRevLett.106.034301. Epub 2011 Jan 18.
4
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.
Phys Med Biol. 2009 Mar 21;54(6):R27-57. doi: 10.1088/0031-9155/54/6/R01. Epub 2009 Feb 19.
7
Microbubbles in ultrasound-triggered drug and gene delivery.
Adv Drug Deliv Rev. 2008 Jun 30;60(10):1153-66. doi: 10.1016/j.addr.2008.03.005. Epub 2008 Apr 3.
8
Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall.
J Acoust Soc Am. 2007 Aug;122(2):1191-200. doi: 10.1121/1.2747204.
9
Acoustic response of compliable microvessels containing ultrasound contrast agents.
Phys Med Biol. 2006 Oct 21;51(20):5065-88. doi: 10.1088/0031-9155/51/20/001. Epub 2006 Sep 22.
10
The static elastic properties of the arterial wall.
J Physiol. 1961 May;156(3):445-57. doi: 10.1113/jphysiol.1961.sp006686.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验