Suppr超能文献

前额叶皮层在延迟反应任务中的简单功能模型。

A simple model of prefrontal cortex function in delayed-response tasks.

机构信息

Laboratoire de Sciences Cognitives et Psycholinguistique, France.

出版信息

J Cogn Neurosci. 1989 Summer;1(3):244-61. doi: 10.1162/jocn.1989.1.3.244.

Abstract

Both psychologists and neurobiologists have used delayed response (DR), AB, and delayed matching-to-sample (DMS) tasks as tools to study the functions of prefrontal cortex in primates and humans. We describe a simulation model that relates behavioral and electrophysiological-data relevant to these tasks into a minimal neural network. The inputs to the network are two visual objects and a positive or negative reinforcement signal. As the output, the network orients toward one of the two objects. We subdivide the architecture of the network into two levels, both of which embody constraints from neuroanatomy in a simplified form. Level 1 consists of a sensory-motor loop with modifiable synaptic weights and provides a capacity for grasping. Level 2 contains memory and rule-coding units and modulates the lower level 1. When level 1 only is simulated, the network fails to learn the tasks. The errors made by the network resemble those of young monkeys, infants, or adults with prefrontal lesions. In particular, the systematic AB error can be reproduced. With level 2 on top of level 1, the network acquires systematic rules of behavior by mere reinforcement and rapidly adapts to changes in the reinforcement schedule. Learning takes place by selection among a repertoire of possible rules. The properties of the model are discussed in terms of actual behavioral and physiological data, and several critical experimental predictions are presented. In particular, we address the issues of prefrontal functions, "systematicity" in neural networks, and "mental Darwinism."

摘要

心理学家和神经生物学家都使用延迟反应 (DR)、AB 和延迟匹配样本 (DMS) 任务作为研究灵长类动物和人类前额叶皮层功能的工具。我们描述了一个模拟模型,该模型将与这些任务相关的行为和电生理数据与一个最小神经网络联系起来。网络的输入是两个视觉对象和一个正或负的强化信号。作为输出,网络会朝向两个对象之一。我们将网络的结构细分为两个层次,这两个层次都以简化的形式体现了神经解剖学的约束。第 1 层由具有可修改的突触权重的感觉运动回路组成,提供了抓握的能力。第 2 层包含记忆和规则编码单元,并调节较低的第 1 层。当仅模拟第 1 层时,网络无法学习任务。网络犯的错误类似于年轻猴子、婴儿或前额叶损伤的成年人的错误。特别是,可以再现系统的 AB 错误。在第 1 层之上有第 2 层,网络通过仅仅强化来获得行为的系统规则,并迅速适应强化时间表的变化。学习是通过从可能规则的范围内进行选择来进行的。该模型的性质根据实际的行为和生理数据进行了讨论,并提出了几个关键的实验预测。特别是,我们解决了前额叶功能、神经网络中的“系统性”和“心理达尔文主义”问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验