Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Badgasteiner Str. 3, 28359 Bremen, Germany.
Ultramicroscopy. 2013 Oct;133:101-8. doi: 10.1016/j.ultramic.2013.07.001. Epub 2013 Jul 11.
We numerically simulate low-loss Electron Energy Loss Spectroscopy (EELS) of isolated spheroidal nanoparticles, using an electromagnetic model based on a Generalized Multipole Technique (GMT). The GMT is fast and accurate, and, in principle, flexible regarding nanoparticle shape and the incident electron beam. The implemented method is validated against reference analytical and numerical methods for plane-wave scattering by spherical and spheroidal nanoparticles. Also, simulated electron energy loss (EEL) spectra of spherical and spheroidal nanoparticles are compared to available analytical and numerical solutions. An EEL spectrum is predicted numerically for a prolate spheroidal aluminum nanoparticle. The presented method is the basis for a powerful tool for the computation, analysis and interpretation of EEL spectra of general geometric configurations.
我们使用基于广义多极技术 (GMT) 的电磁模型对孤立的球形纳米粒子进行了低损耗电子能量损失谱 (EELS) 的数值模拟。GMT 快速准确,并且原则上灵活适用于纳米粒子形状和入射电子束。所实现的方法针对平面波散射的球形和球形纳米粒子的参考分析和数值方法进行了验证。此外,还将球形和球形纳米粒子的模拟电子能量损失 (EEL) 光谱与可用的分析和数值解决方案进行了比较。预测了长椭球形铝纳米粒子的 EEL 光谱。所提出的方法为一般几何结构的 EEL 光谱的计算、分析和解释提供了强大的工具基础。